Что такое плотность тока

Содержание

Что такое электрический ток: определение, характеристики, виды

Что такое плотность тока

Открытия, связанные с электричеством, кардинально изменили нашу жизнь. Используя электрический ток как источник энергии, человечество сделало прорыв в технологиях, которые облегчили наше существование.

Сегодня электричество приводит в движение токарные станки, автомобили, управляет роботизированной техникой, обеспечивает связь. Этот список можно продолжать очень долго.

Даже трудно назвать отрасль, где можно обойтись без электроэнергии.

В чём секрет такого массового использования электричества? Ведь в природе существуют и другие источники энергии, более дешевые, чем электричество. Оказывается всё дело в транспортировке.

Электрическую энергию можно доставить практически везде:

  • к производственному цеху;
  • квартире;
  • на поле;
  • в шахту, под воду и т. д.

Электроэнергию, накопленную аккумулятором, можно носить с собой. Мы пользуемся этим ежедневно, беря с собой сотовый телефон. Ни один другой вид энергии не обладает такими универсальными свойствами как электричество. Разве это не является достаточной причиной для того, чтобы глубже изучить природу и свойства электричества?

Что такое электрический ток?

Электрические явления наблюдались давно, но объяснить их природу человек смог относительно недавно. Удар молнии казался чем-то неестественным, необъяснимым. Странным казалось потрескивание некоторых предметов при их трении. Искрящаяся в темноте расчёска, после расчёсывания шерсти животных (например, кошки) вызвала недоумение, но подогревала интерес к этому явлению.

Как всё начиналось

Ещё древним грекам было известно свойство янтаря, потёртого о шерсть, притягивать некоторые мелкие предметы. Кстати, от греческого названия янтаря –«электрон» пошло название «электричество».

Когда физики вплотную занялись исследованием электризации тел, они начали понимать природу подобных явлений.

А первый кратковременный электрический ток, созданный человеком, появился при соединении проводником двух наэлектризованных предметов (см. рис. 1). В 1729 году англичане Грей и Уиллер открыли проводимость зарядов некоторыми материалами.

Но определения электрического тока они не смогли дать, хотя и понимали, что заряды перемещаются от одного тела к другому по проводнику.

Рис. 1. Опыт с заряженными телами

Об электрическом токе, как о физическом явлении заговорили лишь после того, как итальянец Вольта дал объяснение опытам Гальвани, а в 1794 году изобрёл первый в мире источник электричества – гальванический элемент (столб Вольта). Он обосновал упорядоченное перемещение заряженных частиц по замкнутой цепи.

Определение

В современной трактовке электрическим током называют направленное перемещение силами электрического поля заряженных частиц, Носителями зарядов металлических проводников являются электроны, а растворов кислот и солей — отрицательные и положительные ионы. Полупроводниковыми носителями зарядов являются электроны и «дырки».

Для того чтобы электрический ток существовал, необходимо всё время поддерживать электрическое поле. Должна существовать разница потенциалов, поддерживающая наличие первых двух условий. До тех пор, пока эти условия соблюдены, заряды будут упорядоченно перемещаться по участкам замкнутой электрической цепи. Эту задачу выполняют источники электричества.

Такие условия можно создать, например, с помощью электрофорной машины (рис. 2). Если два диска вращать в противоположных направлениях, то они будут заряжаться разноимёнными зарядами.

На щётках, прилегающих к дискам, появится разница потенциалов. Соединив контакты проводником, мы заставим заряженные частицы двигаться упорядоченно.

То есть электрофорная машина является источником электричества.

Рисунок 2. Электрофорная машина

Источники тока

Первыми источниками электрической энергии, нашедшими практическое применение, были упомянутые выше гальванические элементы. Усовершенствованные гальванические элементы (народное название – батарейки) широко применяются по сей день. Они используются для питания пультов управления, электронных часов, детских игрушек и многих других гаджетов.

С изобретением генераторов переменных токов электричество приобрело второе дыхание. Началась эра электрификации городов, а позже и всех населённых пунктов. Электрическая энергия стала доступной для всех граждан развитых стран.

Сегодня человечество ищет возобновляемые источники электроэнергии. Солнечные панели, ветряные электростанции уже занимают свои ниши в энергосистемах многих стран, включая Россию.

Характеристики

Электрический ток характеризуется величинами, которые описывают его свойства.

Сила и плотность тока

Для описания характеристики электричества часто используют термин «сила тока».

Название не совсем удачное, так как оно характеризует только интенсивность движения электрических зарядов, а не какую-то силу в буквальном смысле.

Тем не менее, этим термином пользуются, и он означает количество электричества (зарядов) проходящего через плоскость поперечного сечения проводника. Единицей измерения силы тока в системе СИ является ампер (А).

1 А означает то, что за одну секунду через поперечное сечение проводника проходит электрический заряд 1 Кл. (1А = 1 Кл/с).

Плотность тока  –  векторная величина. Вектор направлен в сторону движения положительных зарядов. Модуль этого вектора равен отношению силы тока на некотором перпендикулярном к направлению движения зарядов сечении проводника к площади этого сечения. В системе СИ измеряется в А/м2. Плотность более ёмко характеризует электричество, однако на практике чаще используется величина «сила тока».

Разница потенциалов (напряжение) на участке цепи выражается соотношением: U = I×R, где U – напряжение, I – сила тока, а R – сопротивление. Это знаменитый закон Ома.

Мощность

Электрическими силами совершается работа против активного и реактивного сопротивления. На пассивных сопротивлениях работа преобразуется в тепловую энергию. Мощностью называют работу, выполненную за единицу времени.

По отношению к электричеству применяют термин «мощность тепловых потерь». Физики Джоуль и Ленц доказали, что мощность тепловых потерь проводника равна силе тока умноженной на напряжение: P = I× U.

Единица измерения мощности – ватт (Вт).

Частота

Переменный ток характеризуется также частотой. Данная характеристика показывает, как за единицу времени изменяется количество периодов (колебаний). Единицей измерения частоты является герц. 1 Гц = 1 периоду за секунду. Стандартная частота промышленного тока составляет 50 Гц.

Ток смещения

Понятие «ток смещения» ввели для удобства, хотя в классическом понимании его нельзя назвать током, так как отсутствует перенос заряда. С другой стороны, интенсивность магнитного поля пребывает в зависимости от токов проводимости и смещения.

Токи смещения можно наблюдать в конденсаторах. Несмотря на то, что при зарядке и разрядке между обкладками конденсатора не происходит перемещения заряда, ток смещения протекает через конденсатор и замыкает электрическую цепь.

Виды тока

По способу генерации и свойствам электроток бывает постоянным и переменным. Постоянный – это такой, что не меняет своего направления. Он течёт всегда в одну сторону.

Переменный ток периодически меняет направление. Под переменным понимают любой ток, кроме постоянного.

Если мгновенные значения повторяются в неизменной последовательности через равные промежутки времени, то такой электроток называют периодическим.

Классификация переменного тока

Классифицировать изменяющиеся во времени токи можно следующим образом:

  1. Синусоидальный, подчиняющийся синусоидальной функции во времени.
  2. квазистационарный – переменный, медленно изменяющийся во времени. Обычные промышленные токи являются квазистационарными.
  3. Высокочастотный – частота которого превышает десятки кГц.
  4. Пульсирующий – импульс которого периодически изменяется.

Различают также вихревые токи, которые возникают в проводнике при изменении магнитного потока. Блуждающие токи Фуко, как их ещё называют, не текут по проводам, а образуют вихревые контуры. Индукционный ток имеет ту же природу что и вихревой.

Дрейфовая скорость электронов

Электричество по металлическому проводнику распространяется со скоростью света. Но это не означает, что заряженные частицы несутся от полюса к полюсу с такой же скоростью.

Электроны в металлических проводниках встречают на своём пути сопротивление атомов, поэтому их реальное перемещение составляет всего 0,1 мм за секунду.

Реальная, упорядоченная скорость перемещения электронов в проводнике называется дрейфовой.

Если замкнуть проводником полюсы источника питания, то вокруг проводника молниеносно образуется электрическое поле. Чем больше ЭДС источников, тем сильнее проявляется напряжённость электрического поля. Реагируя на напряжённость, заряженные частицы вмиг принимают упорядоченное движение и начинают дрейфовать.

Направление электрического тока

Традиционно считают, что вектор электрического тока направлен к отрицательному полюсу источника. Но на самом деле электроны движутся к положительному полюсу. Традиция возникла из-за того, что за направление вектора было выбрано движение положительных ионов в электролитах, которые действительно стремятся к негативному полюсу.

Электроны проводимости с отрицательным зарядом в металлах были открыты позже, но физики не стали менять первоначальные убеждения. Так укрепилось утверждение, что ток направлен от плюса к минусу.

Электрический ток в различных средах

Носителями тока в металлических проводниках являются свободные электроны, которые из-за слабых электрических связей хаотично блуждают внутри кристаллических решёток (рис. 3). Как только в проводнике появляется ЭДС, электроны начинают упорядочено дрейфовать в сторону позитивного полюса источника питания.

Рис. 3. Электрический ток в металлах

В результате прохождения тока возникает сопротивление проводников, которое препятствует потоку электронов и приводит нагреванию. При коротком замыкании выделение тепла настолько сильное, разрушает проводник.

В полупроводниках

в обычном состоянии у полупроводника нет свободных носителей зарядов.  но если соединить два разных типа полупроводников, то при прямом подключении они превращаются в проводник. происходит это потому, что у одного типа есть положительно заряженные ионы (дырки), а у другого – отрицательные ионы (атомы с лишним электроном).

под напряжением электроны из одного полупроводника устремляются для замещения (рекомбинации) дырок в другом. возникает упорядоченное движение свободных зарядов. такую проводимость называют электронно-дырочной.

в вакууме и газе

электрический ток возможен и в ионизированном газе. заряд переносится положительными и отрицательными ионами. ионизация газов возможна под действием излучения или вследствие сильного нагревания. под действием этих факторов возбуждаются атомы, которые превращаются в ионы (рис. 4).

рис 4. электрический ток в газах

в вакууме электрические заряды не встречают сопротивления, поэтому. заряженные частицы движутся с околосветовыми скоростями. носителями зарядов являются электроны. для возникновения тока в вакууме необходимо создать источник электронов и достаточно большой положительный потенциал на электроде.

примером может служить работа вакуумной лампы или электронно-лучевая трубка.

в жидкостях

оговоримся сразу – не все жидкости являются проводниками. электрический ток возможен в кислотных, щёлочных и соляных растворах. иначе говоря – в средах, где имеются заряженные ионы.

если опустить в раствор два электрода и подключить их к полюсам источника, то между ними будет протекать электрический ток (рис. 5). под действием эдс катионы устремятся к катоду (минусу), а анионы к аноду. при этом будет происходить химическое воздействие на электроды – на них будут оседать атомы растворённых веществ. такое явление называют электролизом.

рис. 5. электроток в жидкостях

для лучшего понимания свойств электротока в разных средах, предлагаю рассмотреть картинку на рисунке 6. обратите внимание на вольтамперные характеристики (4 столбец).

рис. 6. электрический ток в средах

проводники электрического тока

Среди множества веществ, лишь некоторые являются проводниками. К хорошим проводникам относятся металлы. Важной характеристикой проводника является его удельное сопротивление.

Небольшое сопротивление имеют:

  • все благородные металлы;
  • медь;
  • алюминий;
  • олово;
  • свинец.

На практике наиболее часто применяют алюминиевые и медные проводники, так как они не слишком дорогие.

Электробезопасность

Несмотря на то что электричество прочно вошло в нашу жизнь, не следует забывать об электробезопасности. Высокие напряжения опасны для жизни, а короткие замыкания становятся причиной пожаров.

При выполнении ремонтных работ необходимо строго соблюдать правила безопасности: не работать под высоким напряжением, использовать защитную одежду и специальные инструменты, применять ножи заземления и т.п.

В быту используйте только такую электротехнику, которая рассчитана на работу в соответствующей сети. Никогда не ставьте «жучки» вместо предохранителей.

Помните, что мощные электролитические конденсаторы имеют большую электрическую емкость. Накопленная в них энергия может вызвать поражение даже спустя несколько минут после отключения от сети.

Источник: https://www.asutpp.ru/chto-takoe-elektricheskiy-tok.html

Плотность тока — что это такое и в чем измеряется

Что такое плотность тока

Проходя по длине проводникового элемента, электроток распределяется по его поверхности неравномерно. Плотность электрического тока характеризует распределение токовых зарядов по поперечному сечению проводящего материала.

Неравномерное распределение электротока по проводнику

Виды электротока, условия протекания

Частицы, несущие заряд, могут перемещаться в толще проводника беспорядочно или целенаправленно двигаться в определенном направлении. Во втором случае говорят о наличии электрического тока. Основная его характеристика – наличие вектора перемещения. Вектор токового движения идентичен направлению заряженных частиц.

Хаотичное и направленное перемещение заряженных частиц

Важно! Токовый ход может быть постоянным и переменным. В первом случае поток частиц перемещается четко в одном направлении по прямой, без колебаний и возмущений. Во втором – имеют место синусоидальные колебания с определенной частотой.

Для трансформации (выпрямления) переменного электротока применяют специальные устройства. Вообще для существования константного тока требуется, чтобы с одного конца проводникового элемента все время имел место избыток отрицательно заряженных частиц, а со второго – дефицит.

Также требуется сила, которая будет эти заряды перемещать.

Переменный ток, в противоположность постоянному, не требует соблюдения полярности. В отличие от постоянного, он имеет частоту – так называется количество смен направления перемещения частиц за единицу времени. В стандартной бытовой сети число таких смен равно 50 в секунду.

Различные приборы, питающиеся от аккумуляторных элементов и батарей, а также бытовая техника, ноутбуки, стационарные компьютеры потребляют постоянный электроток.

Сама батарея является генератором постоянного токового хода, но его можно инвертировать в переменный с помощью специальных устройств.

Ток, вызываемый электрополем, принято называть током проводимости. Элементарные частицы, переносящие заряд, отличаются у разных типов проводниковых материалов.

В случае металлических элементов это свободные электроны, у части полупроводниковых материалов – целенаправленно движущиеся ионы.

В электролитах (в том числе применяемых в аккумуляторных батареях) ионы с плюсовым и минусовым зарядами движутся в разные стороны. Последнее характерно для всех проводников, представляющих собой жидкости.

В конвекционном электротоке электроны перемещаются под действием инерции. Еще одна разновидность тока – протекающий в вакуумных условиях (такое явление применяется в электронных лампочках). Основными характеристиками электротока являются сила и плотность тока.

Направленное перемещение электронов в проводнике

Плотность тока и мощность

Что такое электрическое сопротивление

Работа, которую электрополе совершает над источниками токового движения, может быть охарактеризована плотностью мощности (она равна энергии, деленной на произведение объема проводника и временного периода).

Самый распространенный путь данной мощности – рассеивание во внешнее пространство в качестве тепловой энергии. Но некоторая ее доля может превращаться в механическую энергию (например, при работе электрического двигателя) или в разные типы излучения.

Закон Ома

Сопротивление тока: формула

Для токопроводящей среды, обладающей изотропными характеристиками, данный закон имеет следующий вид:

j=E* σ,

где j – плотность идущего электротока, Е – полевая напряженность в рассматриваемой точке (скалярная величина, как и предыдущая), а σ – удельная проводимость средового окружения.

Что касается работы электрополя для такой среды (w), то она может быть выражена следующими формулами:

w= E2* σ=j2/σ=p*j2 (p здесь – удельное сопротивление).

Выражение для работы в этом случае примет вид:

w=E* σ *E=j*p*j (E и j в данном случае – скалярные величины).

В матрице справа налево умножают столбчатый вектор на строчной и на матрицу. Тензорные величины р и σ генерируют релевантные им квадратичные формы.

Единица измерения плотности электротока

Электрическое поле — что это такое, понятие в физике

Для выражения плотностной величины применяется производная от единиц измерения токовой силы (Ампер) и площади поперечного разреза (квадратный метр), а также дольных и кратных указанным. Обычно плотность измеряется в амперах, разделенных на квадратный метр (А/м2). Вместо слова «плотность» иногда используют «насыщенность электрического тока».

Важно! Поскольку величина имеет направление, она относится к категории векторных (или скалярных). Этот вектор проходит вдоль оси электрического тока.

Формула вычисления

Рассматриваемая величина находится в обратной зависимости от размеров сечения (чем больше площадь, тем меньше плотность тока) и временного периода прохождения электрозаряда и в прямой – от величины этого заряда.

Это можно записать так:

j=Δq/ΔtΔS (q тут – элементарно малый заряд, t – бесконечно малый промежуток времени, а S – площадь сечения).

Так как токовая сила выражается как частное заряда и временного промежутка его прохода, формулу можно записать и так:

j= I/ΔS.

Формула плотности тока с опорой на параметры перемещающихся зарядов будет выглядеть так:

j=q*n*V (V тут – скорость, а n – концентрация электронных частиц).

4-вектор плотности тока

Данное обозначение из теории относительности призвано обобщать явление плотности на пространственно-временной континуум, оперирующий четырьмя измерениями.

Такой четырехвектор включает в себя трехвекторное выражение токовой плотности (скалярной величины) и имеющей объем плотности электрического заряда.

Использование четырехвектора дает возможность формулировать электродинамические уравнения ковариантным образом.

Рассматриваемая величина необходима для описания концентрации и равномерности распределения заряженных микрочастиц по проводниковому материалу, в котором существует та или иная форма электротока. При оперировании с выражениями, содержащими величину, нужно не забывать о ее скалярности.

Источник: https://amperof.ru/teoriya/plotnost-toka-chto-eto-takoe-i-v-chem-izmeryaetsya.html

Что такое плотность тока

Что такое плотность тока

Электрические провода, находящиеся под напряжением, постоянно испытывают определенную нагрузку. Поэтому очень часто возникает вопрос, что такое плотность тока и каким образом она влияет на качество электроснабжения.

Фактически данная величина характеризует степень электрической нагрузки проводников. Она позволяет предотвратить излишние потери при прокладке кабельных линий.

Во время использования устройств с высокой частотой, следует учитывать наличие дополнительных электродинамических эффектов.

Плотность электрического тока

Под действием электрического поля начинается упорядоченное перемещение зарядов, известное всем, как электрический ток. Обычно для движения зарядов используется какая-либо среда, которая называется проводником и является носителем тока.

Плотность тока совместно с другими факторами характеризует движение зарядов. Формула плотности тока дает описание электрического заряда, переносимого в течение 1 секунды через определенное сечение проводника, направленного перпендикулярно этому току.

Таким образом, с физической точки зрения плотность тока — это заряды, в определенном количестве протекающие через установленную единицу площади в период единицы времени. Данный параметр является векторной величиной и представляется в виде соотношения силы тока и площади поперечного сечения проводника, по которому и протекает этот ток.

Модульное значение плотности тока будет равно: j = I/S. В этой формуле j является модулем вектора, I – силой тока, S – площадью поперечного сечения.

Векторы плотности тока и скорости движения токообразующих зарядов имеют одинаковое направление, если заряды обладают положительным значением и противоположное – когда они отрицательные.

В чем измеряется плотность тока? В качестве единицы измерения используется А/мм2.

Данная величина применяется на практике, в основном, для принятия решения о выборе того или иного проводника в соответствии с его способностями выдерживать те или иные нагрузки.

плотность играет важную роль, поскольку каждый проводник обладает сопротивлением. В результате потерь тока происходит нагрев проводника. Чрезмерные потери приводят к критическому нагреванию, вплоть до расплавления жил.

Удельное сопротивление алюминия

Для предотвращения подобных ситуаций, каждый потребитель рассчитывается на определенную плотность, по которой подбирается и оптимальное сечение проводника. Во время проектирования, помимо расчетных формул, используются уже готовые таблицы, содержащие все необходимые исходные данные, на основе которых можно получить конечный результат.

Следует помнить, что у разных проводников неодинаковая плотность электрического тока.

В современных условиях практикуется использование преимущественно медных проводов, где это значение не превышает 6-10 А/мм2.

Это приобретает особую актуальность в условиях длительной эксплуатации, когда проводка должна работать в облегченном режиме. Повышенные нагрузки допускаются, но лишь на короткий период времени.

Сила тока и плотность

Для того чтобы понять, как работает та или иная электрическая величина, необходимо знать условия и степень их взаимодействия между собой. Большое значение имеет зависимость силы и плотности тока в проводнике. Перед тем как рассматривать эту зависимость следует более подробно остановиться на понятии электрического тока.

Под действием определенных факторов в металлах, выступающих в роли основных проводников, образуется направленное движение заряженных частиц. Как правило, это электроны, обладающие отрицательным зарядом.

Существуют и другие проводники, называемые электролитами, в которых направленное движение создается ионами, которые могут быть положительными или отрицательными.

Третий вид проводников представляет собой различные газы, где электрический ток создается не только электронами, но и с помощью положительных и отрицательных ионов. Величину плотности тока можно определить в любом проводнике, но более наглядно это будет на примере металлов.

Условно электрический ток имеет направление, совпадающее с направлением движения положительно заряженных частиц. Для его создания и существования необходимо соблюдение двух основных условий.

В первую очередь, это сами заряженные частицы, которые могут свободно перемещаться в проводнике под действием сил электрического поля.

Соответственно, необходимо само электрическое поле, способное существовать в проводнике в течение длительного времени под действием источника тока.

Сила (I) и плотность (j) электрического тока являются его основными характеристиками.

Сила тока считается скалярной физической величиной, определяемой как отношение заряда ∆q, проходящего через поперечное сечение проводника в течение некоторого времени ∆t, к данному временному промежутку.

В виде формулы это будет выглядеть следующим образом: I = ∆q/∆t. Единицей измерения силы тока служит ампер. Это позволит в дальнейшем решить вопрос, как найти плотность тока.

Существует связь силы тока со скоростью свободных зарядов, находящихся в упорядоченном движении. Определить эту зависимость можно на примере участка проводника, имеющего площадь сечения S и длину ∆l. Заряд каждой частицы принимается за q0, а объем проводника ограничивается сечениями № 1 и № 2.

В этом объеме количество частиц составляет nS∆l, где n является концентрацией частиц. Величина их общего заряда составляет: ∆q = q0nS∆l. Упорядоченное движение свободных зарядов осуществляется со средней скоростью hvi. Следовательно за установленный промежуток времени ∆t = ∆I/ hvi все частицы, находящиеся в этом объеме, пройдут через сечение № 2.

В результате, сила тока составит I = ∆q/∆t, как уже и было отмечено.

Сила тока имеет непосредственную связь с плотностью тока j представляющей собой векторную физическую величину. Ее модуль определяется как отношение силы тока I и площади поперечного сечения проводника. Плотность формула отражает как j = I/S.

Вектор плотности тока совпадает с вектором скорости упорядоченно движущихся положительно заряженных частиц. Постоянный ток обладает плотностью, имеющей стабильное значение на всем поперечном сечении проводника.

Таким образом, плотность и сила тока самым тесным образом связаны между собой.

Источник: https://electric-220.ru/news/chto_takoe_plotnost_toka/2017-04-10-1226

Сила и плотность тока. Линии тока

Что такое плотность тока

Электрический ток количественно характеризует сила тока (I), которая равна производной от заряда ($q$) по времени для тока, который течет через поверхность S:

По своей сути сила тока — это поток заряда через поверхность S.

Определение

Электрический ток — процесс движения, как отрицательных зарядов, так и положительных.

Перенос отрицательного заряда в одном направлении эквивалентен переносу такого же положительного заряда в противоположном направлении. В том случае, если ток создается зарядами обоих знаков $(dq+\ и\ dq-)$, то можно записать, что сила тока равна:

\[I=\frac{dq+}{dt}+\frac{dq-}{dt}\left(2\right).\]

Положительным направлением тока считают направление движения положительных зарядов. Ток может быть постоянным и переменным. В том случае, если сила тока и его направление не изменяется во времени, то такой ток называют постоянным и для него выражение для силы тока можно записать в виде:

\[I=\frac{q}{\triangle t}\left(3\right),\]

где сила тока определена, как заряд, который проходит через поверхность S в единицу времени. В системе СИ основной единицей измерения силы тока является Ампер (А).

\[1A=\frac{1Кл}{1с}.\]

Плотность тока. Связь плотности тока с зарядом и силой тока, напряженностью

Выделим в проводнике, по которому течет ток, малый объем dV произвольной формы. Обозначим через $\left\langle v\right\rangle $– среднюю скорость, с которой движутся носители заряда в проводнике. пусть $n_0\ $– концентрация носителей заряда. Выберем бесконечно малую площадку dS на поверхности проводника, которая перпендикулярно скорости $\left\langle v\right\rangle $ (рис.1).

Рис. 1

Построим на площадке dS очень короткий прямой цилиндр с высотой $\left\langle v\right\rangle dt.$ Все частицы, которые находились внутри этого цилиндра за время dt пройдут через площадку dS и перенесут через нее в направлении скорости $\left\langle v\right\rangle \ $заряд равный:

\[dq=n_0q_e\left\langle v\right\rangle dSdt\left(4\right),\]

где $q_e=1,6\cdot {10}{-19}Кл$ — заряд электрона, то есть отдельной частицы – носителя тока. Разделим выражение (4) на $dSdt$ получим:

\[j=\frac{dq}{dSdt}\left(5\right),\]

где $j$ — модуль плотности электрического тока.

\[j=n_0q_e\left\langle v\right\rangle \left(6\right),\]

где $j$ — модуль плотности электрического тока в проводнике, где заряд переносят электроны.

Если ток образуется в результате движения нескольких типов зарядов, то плотность тока можно определить как:

\[j=\sum\limits_i{n_iq_i\left\langle v_i\right\rangle \left(7\right)},\]

где i — определяет носитель заряда.

Плотность тока — векторная величина. Обратимся вновь к рис.1. Пусть $\overrightarrow{n}$ — единичная нормаль к площадке dS. Если частицы, которые переносят заряд положительные, то переносимый ими заряд в направлении нормали больше нуля. В общем случае элементарный заряд, который переносится в единицу времени, можно записать как:

\[\frac{dq}{dt}=\left(\overrightarrow{j}\overrightarrow{n}\right)dS=j_ndS\ \left(8\right).\]

Формула (8) справедлива и в том случае, когда площадка dS неперпендикулярная вектору плотности тока. Так как составляющая вектора $\overrightarrow{j}$, перпендикулярная нормали, через площадку dS электричества не переносит. Таким образом, плотность тока в проводнике окончательно запишем, используя формулу (6) следующим образом:

\[\overrightarrow{j}=-n_0q_e\left\langle \overrightarrow{v}\right\rangle \left(9\right).\]

И так, плотность тока равна количеству электричества (заряду), который протекает за одну секунду через единицу сечения проводника. Для однородного цилиндрического проводника можно записать, что:

\[j=\frac{I}{S\triangle t}\left(10\right),\]

где S — площадь сечения проводника.

Плотность постоянного тока одинакова по всему сечению проводника. Для двух разных сечений проводника ($S_1{,S}_2$) с постоянным током выполняется равенство:

\[\frac{j_1}{j_2}=\frac{S_2}{S_1}\left(11\right).\]

Из закона Ома для плотности токов можно записать:

\[\overrightarrow{j}=\lambda \overrightarrow{E}\left(13\right),\]

где $\lambda $ — коэффициент удельной электропроводности.

Зная плотность тока, можно выразить силу тока как:

\[I=\int\limits_S{j_ndS\ \left(14\right),}\]

где интегрирование проводят по всей поверхности S любого сечения проводника.

Единица плотности тока $\frac{A}{м2}$.

Линии тока

Определение

Линии, вдоль которых движутся заряженные частицы, называют линиями тока.

Направлениями линий тока являются направления движения положительных зарядов. Нарисовав линии тока, получают наглядное представление о движении электронов и ионов, которые образуют ток.

Если внутри проводника выделить трубку с током, у которой боковая поверхность состоит из линий тока, то движущиеся заряженные частицы не будут пересекать боковую поверхность такой трубки. Подобную трубку называют трубкой тока.

Например, поверхность металлической проволоки в изоляторе будет являться трубой тока.

Пример 1

Задание: Сила тока в проводнике увеличивается равномерно от 0 до 5 А в течении 20 с. Найдите заряд, который прошел через поперечное сечение проводника за это время.

Решение:

За основу решения задачи примем формулу, которая определяет силу тока, а именно:

\[I=\frac{dq}{dt}\left(1.1\right).\]

В таком случае заряд будет найден как:

\[q=\int\limits{t_2}_{t_1}{Idt\ \left(1.2\right).}\]

В условии задачи сказано, что сила тока изменяется равномерно, это значит, что можно записать закон изменения силы тока как:

\[I=kt\ \left(1.3\right).\]

Найдем коэффициент пропорциональности в (1.3), для этого запишем закон изменения силы тока еще раз для момента времени при котором сила тока равна $I_2=$3А ($t_2$):

\[I_2=kt_2\ \to k=\frac{I_2}{t_2}\left(1.4\right).\]

Подставим (1.4) в (1.3) и проинтегрируем в соответствии с (1.2), получим:

\[q=\int\limits{t_2}_{t_1}{ktdt=\int\limits{t_2}_{t_1}{\frac{I_2}{t_2}tdt}=\frac{I_2}{t_2}\int\limits{t_2}_{t_1}{tdt}={\left.\frac{t2}{2}\right|}{t_2}_{t_1}=\frac{I_2}{{2t}_2}({t_2}2-{t_1}2)\left(1.5\right).}\]

За начальный момент времени примем момент, когда сила тока равна нулю, то есть $t_1=0,$ $I_1=0\ А.$ $t_2=20,$ $I_1=5\ А.$

Проведем вычисления:

\[q=\frac{I_2}{{2t}_2}{t_2}2=\frac{I_2t_2}{2}=\frac{5\cdot 20}{2}=50\ \left(Кл\right).\]

Ответ: $q=50$ Кл.

Пример 2

Задание: Найдите среднюю скорость движения электронов в проводнике молярная масса вещества, которого равна $\mu $, поперечное сечение проводника S. Сила тока в проводнике I. Считать, что на каждый атом вещества в проводнике приходится два свободных электрона.

Решение:

Силу тока (I) в проводнике можно считать постоянной и соответственно записать, что:

\[I=\frac{q}{\triangle t}=\frac{Nq_e}{\triangle t}\left(2.1\right),\]

где заряд q найдем как произведение числа электронов проводимости в проводнике, на заряд одного электрона $q_e$, который является известной величиной. $\triangle t$ — промежуток времени за который через поперечное сечение проводника проходит заряд q.

Найти N можно, если использовать известное соотношение из молекулярной физики:

\[\frac{N'}{N_A\ }=\frac{m}{\mu }=\frac{\rho V}{\mu }\left(2.2\right),\]

где $N'$- количество атомов в проводнике объем, которого V, плотность $\rho $, молярная масса $\mu $. $N_A$ — число Авогадро. По условию задачи $N=2N'$.

Найдем из (2.2) число свободных электронов:

\[N=2\frac{\rho V}{\mu }N_A\ \left(2.3\right).\]

Подставим (2.3) в (2.1), получим:

\[I=2\frac{\rho V}{\mu }N_A\frac{q_e}{\triangle t}=\frac{2\rho q_eN_ASl}{\mu \triangle t}\left(2.4\right),\]

где объем проводника найден как $V=Sl$, где $l$ — длина проводника. Выразим ее.

\[l=\frac{\mu \triangle tI}{2\rho q_eN_AS}\left(2.5\right).\]

Среднюю скорость движения электронов можно найти как:

\[\left\langle v\right\rangle =\frac{l}{\triangle t}=\frac{\mu I}{2\rho q_eN_AS}.\]

Ответ: $\left\langle v\right\rangle =\frac{\mu I}{2\rho q_eN_AS}.$

Источник: https://spravochnick.ru/fizika/postoyannyy_elektricheskiy_tok/sila_i_plotnost_toka_linii_toka/

Плотность тока. Связь плотности тока с зарядом и силой тока, напряженностью

Выделим в проводнике, в котором протекает ток, малый объем dV случайной формы. С помощью следующего обозначения υ определим среднюю скорость движения носителей зарядов в проводнике. Пускай n0 представляет собой концентрацию носителей заряда. На поверхности проводника выберем пренебрежительно малую площадку dS, которая расположена ортогонально скорости υ (рис. 1).

Рисунок 1

Проиллюстрируем на поверхности площадки dS очень короткий прямой цилиндр, имеющий высоту υdt. Весь массив частиц, которые располагались внутри такого цилиндра за время dt пересекут плоскость dS и перенесут через нее, в направлении скорости υ, заряд, выражающийся в виде следующего выражения:

dq=n0qeυdSdt,

где qe=1,6·10-19 Кл является зарядом электрона, другими словами отдельной частицы или же носителя тока. Разделим приведенную формулу на dSdt и получим:

j=dqdSdt,

где j представляет собой модуль плотности электрического тока.

j=n0qeυ,

где j является модулем плотности электрического тока в проводнике, в котором заряд переносится электронами. В случае, если ток появляется как результат движения нескольких типов зарядов, то формула плотности тока может быть определена в виде следующего выражения:

j=∑niqiυii,

где i представляет собой носитель заряда. Плотность тока — это векторная величина. Снова обратим внимание на рисунок 1. Пускай n→ представляет собой единичный перпендикуляр к плоскости dS.

В случае, если частицы, переносящие заряд, являются положительными, то переносимый ими заряд в направлении нормали больше нуля.

В общем случае переносимый в единицу времени элементарный заряд может быть записана в следующем виде:

dqdt=j→n→dS=jndS.

Формула приведенная выше справедлива также в том случае, когда плоскость площадки dS неортогональная по отношению к вектору плотности тока. По той причине, что составляющая вектора j→, направленная под прямым углом к нормали, через сечение dS электричества не переносит. Исходя из всего вышесказанного, плотность тока в проводнике окончательно запишем, применяя формулу j=n0qeυ в таком виде:

j→=-n0qeυ→.

Таким образом, плотность тока эквивалентна количеству электричества, другими словами заряду, который протекает за одну секунду через единицу сечения проводника. В отношении однородного цилиндрического проводника справедливым будет записать, что:

j=IS∆t,

где S играет роль площади сечения проводника. Плотность постоянного тока равна по всей площади сечения проводника. Для двух разных сечений проводника (S1,S2) с постоянным током справедливо следующее равенство:

j1j2=S2S1.

Основываясь на законе Ома для плотности токов можно записать такое выражение:

j→=λE→,

где λ обозначает коэффициент удельной электропроводности. Определив плотность тока, мы имеем возможность выразить силу тока в следующем виде:

I=∫SjndS,

где интегрирование происходит по всей поверхности S любого сечения проводника. Единица плотности тока Aм2.

Опиши задание

Линии тока

Определение 3

Линии, вдоль которых движутся заряженные частицы, носят название линий тока.

Направления движения положительных зарядов также определяются в качестве направлений линий тока. Изобразив линии тока, можно получить наглядное представление о движении электронов и ионов, которые формируют собой ток.

Если внутри проводника выделить трубку с током, у которой боковая поверхность состоит из линий тока, то движущиеся заряженные частицы не будут пересекать боковую поверхность данной трубки. Такую трубка представляет собой так называемую трубку тока.

К примеру, поверхность металлической проволоки в изоляторе будет определяться как труба тока.

Пример 1

Сила тока в проводнике равномерно возрастает от 0 до 5 А на протяжении 20 с. Определите заряд, который прошел через поперечное сечение проводника за данный отрезок времени.

Решение

В качестве основы решения данной задачи возьмем формулу, которая характеризует собой силу тока, то есть:

I=dqdt.

Таким образом, заряд будет найден как:

q=∫t1t2Idt.

В условии задачи сказано, что сила тока изменяется равномерно, а это означает то, что мы можем записать закон изменения силы тока в следующем виде:

I=kt.

Найдем коэффициент пропорциональности в приведенном выражении, для чего необходимо запишем закон изменения силы тока еще раз для момента времени, при котором сила тока эквивалентна I2=3А (t2):

I2=kt2→k=I2t2.

Подставим выражение выше в I=kt и проинтегрируем в соответствии с q=∫t1t2Idt, получим формулу такого вида: q=∫t1t2ktdt=∫t1t2I2t2tdt=I2t2∫t1t2tdt=t22t1t2=I22t2t22-t12.

В качестве начального момента времени возьмем момент, когда сила тока эквивалентна нулю, другими словами t1=0, I1=0 A; t2=20, I2=5 А. Проведем следующие вычисления:

q=I22t2t22=I2t22=5·202=50 (Кл).

Ответ: q=50 Кл.

Пример 2

Определите среднюю скорость движения электронов в проводнике, молярная масса вещества которого эквивалентна μ, поперечное сечение проводника S. Сила тока в проводнике I. Примем, что на каждый атом вещества в проводнике приходится два свободных электрона.

Решение

Силу тока (I) в проводнике можно считать постоянной, что позволяет нам записать следующее выражение:

I=q∆t=Nqe∆t,

где заряд q определим как произведение числа электронов проводимости в проводнике, на заряд одного электрона qe, представляющего собой известную величину. ∆t играет роль промежутка времени, за который через поперечное сечение проводника проходит заряд q. Найти N можно, если применять известное в молекулярной физике соотношение:

N'NА=mμ=ρVμ,

где N′ играет роль количества атомов в проводнике, объем которого V, плотность ρ, а молярная масса μ. NA представляет собой число Авогадро. По условию задачи N=2N′. Найдем из N'NА=mμ=ρVμ число свободных электронов: N=2ρVμNA.

Подставим выражение, приведенное выше, в I=q∆t=Nqe∆t, в результате чего получим:

I=2ρVμNAqe∆t=2ρqeNASlμ∆t,

где объем проводника найден как V=Sl, где l – длина проводника. Выразим ее.

l=μ∆tI2ρqeNAS.

Среднюю скорость движения электронов или, другими словами, скорость тока в проводнике можно определить следующим образом: υ=l∆t=μI2ρqeNAS.

Ответ: υ=μI2ρqeNAS.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Не получается написать работу самому?

Доверь это кандидату наук!

Источник: https://Zaochnik.com/spravochnik/fizika/postojannyj-elektricheskij-tok/sila-i-plotnost-toka/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.