Как определить фокусное расстояние линзы

Содержание

Определение фокусного расстояния собирательной и рассеивающей линз (стр. 1 из 2)

Как определить фокусное расстояние линзы

ОПРЕДЕЛЕНИЕ ФОКУСНОГО РАССТОЯНИЯ

СОБИРАТЕЛЬНОЙ И РАССЕИВАЮЩЕЙ ЛИНЗ

Элементарная теория тонких линз приводит к простым соотношениям между фокусным расстоянием тонкой линзы, с одной стороны, и расстоянием от линзы до предмета и до его изображения – с другой.

Простой оказывается связь между размерами объекта, его изображения, даваемого линзой, и их расстояниями до линзы. Определяя на опыте названные величины, нетрудно по упомянутым соотношениям вычислить фокусное расстояние тонкой линзы с точностью, вполне достаточной для большинства случаев.

Упражнение 1

Определение фокусного расстояния собирательной линзы

На расположенной горизонтально оптической скамье могут перемещаться на ползушках следующие приборы: матовый экран со шкалой, линза, предмет (вырез в виде буквы F), осветитель.

Все эти приборы устанавливаются так, чтобы центры их лежали на одной высоте, плоскости экранов были перпендикулярны к длине оптической скамьи, а ось линзы ей параллельна.

Расстояния между приборами отсчитываются по левому краю ползушки на шкале линейки, расположенной вдоль скамьи.

Определение фокусного расстояния собирательной линзы производится следующими способами.

Способ 1. Определение фокусного расстояния по расстоянию предмета

и его изображения от линзы.

или ; (1)

(эта формула справедлива только в том случае, когда толщина линзы мала по сравнению с a и b).

Измерения.

Поместив экран на достаточно большом расстоянии от предмета, ставят линзу между ними и передвигают ее до тех пор, пока не получат на экране отчетливое изображение предмета (буква F).

Отсчитав по линейке, расположенной вдоль скамьи, положение линзы, экрана и предмета, передвигают ползушку с экраном в другое положение и вновь отсчитывают соответствующее положение линзы и всех приборов на скамье.

Ввиду неточности визуальной оценки резкости изображения, измерения рекомендуется повторить не менее пяти раз. Кроме того, в данном способе полезно проделать часть измерений при увеличенном, а часть при уменьшенном изображении предмета. Из каждого отдельного измерения по формуле (1) вычислить фокусное расстояние и из полученных результатов найти его среднее арифметическое значение.

Способ 2. Определение фокусного расстояния по величине предмета и

его изображения, и по расстоянию последнего от линзы.

Обозначим величину предмета через l. Величину его изображения через L и расстояние их от линзы (соответственно) через a и b. Эти величины связаны между собой известным соотношением

.

Определяя отсюда b (расстояние предмета до линзы) и подставляя его в формулу (1), легко получить выражение для f через эти три величины:

. (2)

Измерения.

Ставят линзу между экраном и предметом так, чтобы на экране со шкалой получилось сильно увеличенное и отчетливое изображение предмета, отсчитывают положение линзы и экрана. Измеряют при помощи линейки величину изображения на экране. Размеры предмета «l» в мм даны на рис.1.

Рис. 1 .

Измерив расстояние от изображения до линзы, находят фокусное расстояние до линзы по формуле (2).

Изменяя расстояние от предмета до экрана, повторяют опыт несколько раз.

Способ 3. Определение фокусного расстояния по величине перемещения линзы

Если расстояние от предмета до изображения, которое обозначим через А, более 4f, то всегда найдутся два таких положения линзы, при которых на экране получается отчетливое изображение предмета: в одном случае уменьшенное, в другом – увеличенное (рис.2).

Нетрудно видеть, что при этом оба положения линзы будут симметричны относительно середины расстояния между предметом и изображением. Действительно, воспользовавшись уравнением (1), можно написать для первого положения линзы (рис.2).

;

для второго положения

.

Приравняв правые части этих уравнений, найдем

.

Подставив это выражение для x в (Aex) , легко найдем, что

;

то есть, что действительно оба положения линзы находятся на равных расстояниях от предмета и изображения и, следовательно, симметричны относительно середины расстояния между предметом и изображением.

Чтобы получить выражение для фокусного расстояния, рассмотрим одно из положений линзы, например, первое. Для него расстояние от предмета до линзы

.

А расстояние от линзы до изображения

.

Подставляя эти величины в формулу (1), найдем

. (3)

Рис. 2 .

Этот способ является принципиально наиболее общим и пригодным как для толстых, так и для тонких линз.

Действительно, когда в предыдущих случаях пользовались для расчетов величинами а и b, то подразумевали отрезки, измеренные до центра линзы. На самом же деле следовало эти величины измерять от соответствующих главных плоскостей линзы.

В описываемом же способе эта ошибка исключается благодаря тому, что в нем измеряется не расстояние от линзы, а лишь величина ее перемещения.

Измерения.

Установив экран на расстоянии большем 4f от предмета (ориентировочно значение f берут из предыдущих опытов), помещают линзу между ними и, передвигая ее, добиваются получения на экране отчетливого изображения предмета, например, увеличенного. Отсчитав по шкале соответствующее положение линзы, сдвигают ее в сторону и вновь устанавливают. Эти измерения производят пять раз.

Передвигая линзу, добиваются второго отчетливого изображения предмета – уменьшенного и вновь отсчитывают положение линзы по шкале. Измерения повторяют пять раз.

Измерив расстояние А между экраном и предметом, а также среднее значение перемещений е, вычисляют фокусное расстояние линзы по формуле (3).

Определение фокусного расстояния рассеивающей линзы

Укрепленная на ползушках рассеивающая и собирательная линзы, матовый экран и освещенный предмет размещают вдоль оптической скамьи и устанавливают согласно тем же правилам, как и в упражнении 1.

Рис. 3 .

Измерение фокусного расстояния рассеивающей линзы производится следующим способом. Если на пути лучей, выходящих из точки А и сходящихся в точке Dпосле преломления в собирательной линзе В (рис.

3), поставить рассеивающую линзу так, чтобы расстояние СD было меньше ее фокусного расстояния, то изображение точки А удалится от линзы В. Пусть, например, оно переместится в точку Е.

В силу оптического принципа взаимности мы можем теперь мысленно рассмотреть лучи света, распространяющиеся из точки Е в обратную сторону. Тогда точка будет мнимым изображением точки Е после прохождения лучей через рассеивающую линзу С.

Обозначая расстояние ЕС буквой а, DС – через b и замечая, что f и bимеют отрицательные знаки, получим согласно формуле (1)

, т.е. . (4)

Измерения.

На оптической скамье размещают освещенный предмет (F), собирающую линзу, рассеивающую линзу, рассеивающую линзу, матовый экран (в соответствии с рис.3). Положения матового экрана и рассеивающей линзы могут быть выбраны произвольно, но удобнее расположить их в точках, координаты которых кратны 10.

Таким образом, расстояние а определяется как разность координат точек Е и С (координату точки С записать). Затем, не трогая экран и рассеивающую линзу, перемещают собирающую линзу до тех пор, пока на экране не получится четкое изображение предмета (точность результата эксперимента очень зависит от степени четкости изображения).

После этого рассеивающую линзу убирают, а экран перемещают к собирающей линзе и вновь получают четкое изображение предмета. Новое положение экрана определит координату точки D.

Очевидно, разность координат точек С и D определит расстояние b, что позволит по формуле (4) вычислить фокусное расстояние рассеивающей линзы.

Таких измерений проделывают не менее пяти раз, выбирая каждый раз новое положение экрана и рассеивающей линзы.

Примечание. Анализируя расчетную формулу

легко приходим к выводу, что точность определения фокусного расстояния очень зависит от того, насколько сильно отличаются отрезки bи а. Очевидно, что при а близком к b малейшие погрешности в их измерении могут сильно исказить результат.

Источник: https://mirznanii.com/a/322341/opredelenie-fokusnogo-rasstoyaniya-sobiratelnoy-i-rasseivayushchey-linz

Дисперсия света. Линза. Фокусное расстояние линзы. Глаз как оптическая система. Оптические приборы – FIZI4KA

Как определить фокусное расстояние линзы

ОГЭ 2018 по физике ›

1. Если направить на призму пучок белого света, то на экране можно наблюдать разноцветную полосу, которая называется спектром белого света. Спектр состоит из семи простых цветов: красного, оранжевого, жёлтого, зелёного, голубого, синего, фиолетового.

Разложение света в спектр объясняется тем, что световые пучки по-разному преломляются призмой: лучи красного цвета преломляются слабее, а лучи фиолетового цвета сильнее. Зависимость угла преломления света в среде от цвета света (от длины световой волны) называется дисперсией света.

Радуга — это спектр солнечного света. Он образуется при разложении белого света в каплях дождя, которые можно рассматривать как призмы.

2. На явлении преломления света основано получение изображения предмета с помощью линзы.

Линзой называют прозрачное тело, ограниченное двумя сферическими поверхностями. Иногда одна поверхность может быть плоской.

Линза, у которой середина толще, чем края, является выпуклой, она собирает падающий на неё световой пучок и потому называется собирающей (рис. 102).

Линза, у которой края толще, чем середина, является вогнутой, она рассеивает падающий на неё световой пучок и потому называется рассеивающей (рис. 102).

Линию, проходящую через центры сферических поверхностей, ограничивающих линзу, называют главной оптической осью (​\( C_1C_2 \)​ — рис. 103). Точку О называют оптическим центром линзы.

Для построения изображения предмета в линзе достаточно знать ход двух лучей. Один из них — это луч, проходящий через оптический центр линзы, он проходит, не преломляясь.

Второй луч — луч, параллельный главной оптической оси линзы. Все лучи, параллельные главной оптической оси линзы, после преломления собираются в одной точке ​\( F \)​ на оптической оси.

Эта точка называется главным фокусом линзы (рис. 104).

Главный фокус линзы ​\( F \)​ — точка, в которой после преломления собираются лучи, параллельные главной оптической оси.

Расстояние от оптического центра линзы до её фокуса называется фокусным расстоянием. Линза имеет два фокуса: справа и слева от неё.

Если направить на рассеивающую линзу пучок параллельных лучей, то после преломления этот пучок будет расходящимся (рис. 104).

Продолжения лучей соберутся в точке, которую называют главным фокусом рассеивающей линзы. Этот фокус является мнимым, в нём пересекаются не сами лучи, а их продолжения.

Величину, обратную фокусному расстоянию ​\( (F) \)​, называют оптической силой линзы ​\( (D) \)​: ​\( D = 1/F \)​. Единица оптической силы линзы — диоптрия (1 дптр). 1 дптр = 1/м.

Оптическая сила собирающей линзы — величина положительная, оптическая сила рассеивающей линзы — величина отрицательная.

3. Линзы являются главной частью оптических приборов. Существуют две группы оптических приборов: приборы, вооружающие глаз, к которым относятся очки, лупа, микроскоп, телескоп, и приборы, которые формируют изображение без участия глаза: фотоаппарат, проекционный аппарат и пр.

Оптическая схема фотоаппарата представлена на рисунке 105 а.

Предмет находится от линзы на расстоянии, большем двойного фокусного расстояния, а уменьшенное изображение формируется на плёнке, которая помещается на задней стенке фотоаппарата на расстоянии от линзы, близком к фокусному.

Проекционный аппарат позволяет получать на экране действительное увеличенное изображение предметов. Предмет помещается между фокусом и двойным фокусом линзы, чем ближе к фокусу, тем больше размер изображения. Оптическая схема проекционного аппарата показана на рисунке 105 б.

4. Роль линзы в оптической системе глаза играет хрусталик — прозрачное тело, которое может быть более или менее выпуклым, т.е. его фокусное расстояние может изменяться. За хрусталиком расположено стекловидное тело, заполняющее остальную часть глаза.

Хрусталик и стекловидное тело играют роль линзы, преломляющей падающие лучи. На задней стенке глаза находится сетчатка,
на которой после преломления получается действительное уменьшенное, перевёрнутое изображение.

Нервные волокна сетчатки передают ощущение света в мозг.

Существуют 2 основных дефекта зрения: дальнозоркость и близорукость. Близорукий человек хорошо видит близкие предметы и плохо — удалённые. У него изображение предмета формируется за сетчаткой. Для коррекции зрения в этом случае необходимы очки с рассеивающими линзами, делающие входящий в глаз световой пучок расходящимся. В этом случае глаз соберёт лучи на сетчатке.

Дальнозоркий человек хорошо видит удалённые предметы и плохо — близкие. У него изображение предмета формируется за сетчаткой. Для коррекции зрения в этом случае необходимы очки с собирающими линзами. На хрусталик в этом случае падает сходящийся световой пучок, который он преломляет так, что лучи собираются на сетчатке.

  • Примеры заданий
  • Ответы

Часть 1

1. При попадании солнечного света на капли дождя иногда образуется радуга. Появление в радуге полос различного цвета обусловлено явлением

1) преломления света 2) поглощения света 3) дисперсии света

4) многократного отражения света

2. На линзу падает луч, показанный на рисунке. Ходу луча после преломления в линзе соответствует линия

1) 1 2) 2 3) 3

4) 4

3. На рисунке изображён ход падающего на линзу луча. Ходу прошедшего через линзу луча соответствует пунктирная линия

1) 1 2) 2 3) 3

4) 4

4. Предмет находится от собирающей линзы на расстоянии, равном ​\( 2F \)​. На каком расстоянии от линзы находится изображение предмета?

1) меньшем ​\( F \)​
2) между ​\( F \)​ и ​\( 2F \)​
3) большем \( 2F \)
4) равном \( 2F \)

5. Предмет находится от собирающей линзы на расстоянии, меньшем \( 2F \) и большем \( F \). На каком расстоянии от линзы находится изображение предмета?

1) большем \( 2F \)
2) между \( F \) и \( 2F \)
3) меньшем \( F \)
4) равном \( 2F \)

6. Линза, фокусное расстояние которой \( F \), дает действительное уменьшенное изображение предмета. На каком расстоянии от линзы находится предмет?

1) меньше \( F \)
2) больше \( F \) и меньше \( 2F \)
3) равном \( 2F \)
4) большем \( 2F \)

7. На рисунке изображены три предмета: А, Б и В. Изображение какого(-их) предмета(-ов) в тонкой собирающей линзе с фокусным расстоянием \( F \) будет увеличенным, прямым и мнимым?

1) только А 2) только Б 3) только В

4) всех трёх предметов

8. На рисунке показаны положения главной оптической оси линзы (прямая ​\( a \)​), предмета ​\( S \)​ и его изображения ​\( S_1 \)​. Согласно рисунку

1) линза является собирающей 2) линза является рассеивающей 3) линза может быть как собирающей, так и рассеивающей

4) изображение не может быть получено с помощью линзы

9. На рисунке показаны положения главной оптической оси ​\( OO \)​ линзы, источника ​\( S \)​ и его изображения ​\( S_1 \)​ в линзе. Согласно рисунку

1) линза является рассеивающей 2) линза является собирающей 3) линза может быть как собирающей, так и рассеивающей

4) изображение не может быть получено с помощью линзы

10. На сетчатке глаза изображение предмета

1) действительное уменьшенное перевёрнутое 2) мнимое уменьшенное прямое 3) мнимое увеличенное перевёрнутое

4) действительное увеличенное прямое

11. Установите соответствие между световым явлением (в левом столбце таблицы) и его применением (в правом столбце таблицы). В таблице под номером положения предмета левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ПОЛОЖЕНИЕ ПРЕДМЕТА A) отражение света от гладкой поверхности Б) преломление света рассеивающей линзой

B) преломление света собирающей линзой

ПОЛОЖЕНИЕ ИЗОБРАЖЕНИЯ 1) очки для дальнозорких людей 2) зеркало

3) очки для близоруких людей

12. Установите соответствие между положением предмета (в левом столбце таблицы) и положением изображения в линзе (в правом столбце таблицы). В таблице под номером положения предмета левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ПОЛОЖЕНИЕ ПРЕДМЕТА
A) на расстоянии, большем ​\( 2F \)​
Б) между \( F \) и \( 2F \)
B) между \( F \) и линзой

ПОЛОЖЕНИЕ ИЗОБРАЖЕНИЯ
1) перевернутое на расстоянии, большем \( 2F \)
2) уменьшенное между \( F \) и \( 2F \) 3) увеличенное прямое мнимое

4) действительное на расстоянии \( 2F \) от линзы

5) уменьшенное на расстоянии, большем \( 2F \)

Часть 2

13. После прохождения оптического прибора, закрытого на рисунке ширмой, ход лучей 1 и 2 изменился на 1 и 2. Какое оптическое стекло: собирающая линза, рассеивающая линза, плоское зеркало или плоскопараллельная стеклянная пластина находится за ширмой?

Ответы

Источник: https://fizi4ka.ru/ogje-2018-po-fizike/dispersija-sveta-linza-fokusnoe-rasstojanie-linzy-glaz-kak-opticheskaja-sistema-opticheskie-pribory.html

Методы определения фокусного расстояния собирающей линзы. Определение фокусного расстояния линзы

Как определить фокусное расстояние линзы

ОПРЕДЕЛЕНИЕ ФОКУСНОГО РАССТОЯНИЯ

СОБИРАТЕЛЬНОЙ И РАССЕИВАЮЩЕЙ ЛИНЗ

Элементарная теория тонких линз приводит к простым соотношениям между фокусным расстоянием тонкой линзы, с одной стороны, и расстоянием от линзы до предмета и до его изображения – с другой.

Простой оказывается связь между размерами объекта, его изображения, даваемого линзой, и их расстояниями до линзы. Определяя на опыте названные величины, нетрудно по упомянутым соотношениям вычислить фокусное расстояние тонкой линзы с точностью, вполне достаточной для большинства случаев.

Упражнение 1

Определение фокусного расстояния собирательной линзы

На расположенной горизонтально оптической скамье могут перемещаться на ползушках следующие приборы: матовыйэкрансо шкалой,линза,предмет(вырез в виде буквы F),осветитель.

Все эти приборы устанавливаются так, чтобы центры их лежали на одной высоте, плоскости экранов были перпендикулярны к длине оптической скамьи, а ось линзы ей параллельна.

Расстояния между приборами отсчитываются по левому краю ползушки на шкале линейки, расположенной вдоль скамьи.

Определение фокусного расстояния собирательной линзы производится следующими способами.

Способ 1.Определение фокусного расстояния по расстоянию предмета

и его изображения от линзы.

(эта формула справедлива только в том случае, когда толщина линзы мала по сравнению сaиb).

Измерения.

Поместив экран на достаточно большом расстоянии от предмета, ставят линзу между ними и передвигают ее до тех пор, пока не получат на экране отчетливое изображение предмета (букваF).

Отсчитав по линейке, расположенной вдоль скамьи, положение линзы, экрана и предмета, передвигают ползушку с экраном в другое положение и вновь отсчитывают соответствующее положение линзы и всех приборов на скамье.

Ввиду неточности визуальной оценки резкости изображения, измерения рекомендуется повторить не менее пяти раз. Кроме того, в данном способе полезно проделать часть измерений при увеличенном, а часть при уменьшенном изображении предмета. Из каждого отдельного измерения по формуле (1) вычислить фокусное расстояние и из полученных результатов найти его среднее арифметическое значение.

Способ 2.Определение фокусного расстояния по величине предмета и

его изображения, и по расстоянию последнего от линзы.

Обозначим величину предмета черезl.Величину его изображения черезLи расстояние их от линзы (соответственно) черезaиb. Эти величины связаны между собой известным соотношением

Определяя отсюдаb(расстояние предмета до линзы) и подставляя его в формулу (1), легко получить выражение дляfчерез эти три величины:

Измерения.

Ставят линзу между экраном и предметом так, чтобы на экране со шкалой получилось сильно увеличенное и отчетливое изображение предмета, отсчитывают положение линзы и экрана. Измеряют при помощи линейки величину изображения на экране. Размеры предмета «l» в мм даны на рис.1.

Измерив расстояние от изображения до линзы, находят фокусное расстояние до линзы по формуле (2).

Изменяя расстояние от предмета до экрана, повторяют опыт несколько раз.

Способ 3.Определение фокусного расстояния по величине перемещения линзы

Если расстояние от предмета до изображения, которое обозначим черезА, более4f, то всегда найдутся два таких положения линзы, при которых на экране получается отчетливое изображение предмета: в одном случае уменьшенное, в другом – увеличенное (рис.2).

Нетрудно видеть, что при этом оба положения линзы будут симметричны относительно середины расстояния между предметом и изображением. Действительно, воспользовавшись уравнением (1), можно написать для первого положения линзы (рис.2).

;

для второго положения

.

Приравняв правые части этих уравнений, найдем

Подставив это выражение для x в(Aex), легко найдем, что

;

то есть, что действительно оба положения линзы находятся на равных расстояниях от предмета и изображения и, следовательно, симметричны относительно середины расстояния между предметом и изображением.

Чтобы получить выражение для фокусного расстояния, рассмотрим одно из положений линзы, например, первое. Для него расстояние от предмета до линзы

А расстояние от линзы до изображения

Подставляя эти величины в формулу (1), найдем

Этот способ является принципиально наиболее общим и пригодным как для толстых, так и для тонких линз.

Действительно, когда в предыдущих случаях пользовались для расчетов величинамиаиb, то подразумевали отрезки, измеренные до центра линзы. На самом же деле следовало эти величины измерять от соответствующих главных плоскостей линзы.

В описываемом же способе эта ошибка исключается благодаря тому, что в нем измеряется не расстояние от линзы, а лишь величина ее перемещения.

Измерения.

Установив экран на расстоянии большем4fот предмета (ориентировочно значениеfберут из предыдущих опытов), помещают линзу между ними и, передвигая ее, добиваются получения на экране отчетливого изображения предмета, например, увеличенного. Отсчитав по шкале соответствующее положение линзы, сдвигают ее в сторону и вновь устанавливают. Эти измерения производят пять раз.

Передвигая линзу, добиваются второго отчетливого изображения предмета – уменьшенного и вновь отсчитывают положение линзы по шкале. Измерения повторяют пять раз.

Измерив расстояниеАмежду экраном и предметом, а также среднее значение перемещенийе, вычисляют фокусное расстояние линзы по формуле (3).

Фокусное расстояние объектива – что это такое и зачем?

Как определить фокусное расстояние линзы

Фокусное расстояние объектива – это физическая характеристика объектива, определяющая его возможности: увеличение и угол обзора, перспективу и размытие заднего плана. А технически это расстояние между матрицей фотокамеры и точкой фокусировки объектива, в которой сходится преломляемое изображение.

Точку фокусировки называют по-разному: 

  • фокус;
  • фокальная точка;
  • оптический центр объектива;
  • точка конвергенции;
  • точка схождения лучей.

Фокусное расстояние измеряется в миллиметрах и определяет угол обзора объектива.

В зависимости от угла обзора объективы делятся на:

  • Широкоугольные объективы (ширики) – охватывают фокусные расстояния от 8 до 35 мм, при этом объектив с фокусным расстоянием 8 мм дает обзор 180 градусов, а 35 мм – 63 градуса. Такие объективы используются для съемки пейзажей, интерьеров, некрупных портретов в узких улочках или для съемки большого количества людей в небольшом помещении, где нет возможности отойти подальше. Такие объективы дают масштабную картинку, однако есть и минус – искажения по краям снимка, поэтому людей лучше размещать по центру.
  • Портретные объективы (портретники) – охватывают фокусные расстояния от 35 до 85 мм и считаются нормой, то есть дают меньше всего искажений и лучше всего подходят для съемки портретов. Угол обзора тут от 63 до 28 градусов.
  • Длиннофокусные объективы (телевики) – охватывают фокусные расстояния от 85 до 600 мм и рассчитаны на съемку удаленных объектов с большим приближением. Используются в основном для съемки дикой природы, репортажа и слежки – ситуаций, когда ближе подойти просто невозможно. Если, к примеру, на 135 мм угол обзора примерно 18 градусов, то на сверхдлиннофокусном объективе 600 мм он сужается до 4 градусов. Дальше только телескопы.

Получается, чем меньше фокусное расстояние, тем больше объектов помещается в кадр и тем больше искажения этих объектов. А чем больше фокусное расстояние, тем лучше объектив приближает удаленные объекты и задний план.

Как влияет фокусное расстояние объектива на картинку?

Давайте посмотрим, как влияет фокусное расстояние объектива на картинку, на примерах фотографий Екатерины Пикулиной, которая фотографировала свою дочь примерно с расстояния трех метров до объекта съемки.

На широкоугольных объективах на первый план выходит красота пейзажа и архитектуры, а человек в кадре является лишь дополнением картинки, подчеркивает собой масштаб окружающего ландшафта. Обратите внимания на вертикальные линии: пространство так растянуто, что искажения видны невооруженным глазом.

Примерно такой угол обзора у человеческих глаз.

А пропорции и перспективу человеческий глаз воспринимает примерно так.

На портретных объективах обычно получается самое красивой размытие заднего плана.

На фокусных расстояниях больше 105 мм при съемке с трех метров даже маленький ребенок в кадр не влезет.

Схематически влияние фокусного расстояния объектива на масштаб снимаемого объекта при неизменном расстоянии до объекта можно представить вот так:

Фокусное расстояние человеческих глаз

Глаза человека имеют обзор до 125 градусов по вертикали и до 150 градусов по горизонтали (при условии, что оба глаза открыты).

Если эти цифры перевести в фокусное расстояние в миллиметрах, то получится 22,3 мм (большинство исследователей сходятся именно на этой цифре).

По углу обзора глаза похожи на широкоугольный объектив, однако перспективу и пространственные отношения между объектами мы воспринимаем примерно так, как на картинке портретного объектива (примерно 43 мм).

Фиксы и зумы

Но даже если прочесть всю информацию про фокусное расстояние объективов, все равно возникают вопросы: Объектив с каким фокусным расстоянием выбрать? Какое фокусное расстояние наиболее универсально? И что лучше: зум или фикс?

Фикс – это объектив с фиксированным фокусным расстоянием, например, только 85 мм или только 135 мм. А если хочешь приблизить или отдалить объект, придется это делать ножками, отходя или подходя к объекту съемки.

Плюсы фиксов:

  • Светосила – у фиксов может быть светосила от f 1,4 (а топовые от f 0,95), тогда как у зумов обычно она стартует от f 2,8 (есть пару исключений, но они очень дорогие).
  • Вес – фиксы намного легче зумов, поэтому в использовании они комфортнее.
  • Стоимость – фиксы дешевле зумов аналогичного качества и светосилы.
  • Качество фото – у фиксов хорошая контрастность, звенящая резкость, низкая дисторсия, эффективное подавление бликов и засветок, минимальные хроматические аберрации.
  • Срок службы –поскольку в фиксах нет подвижных линз, они меньше подвержены поломке.
  • Использование фильтров – светосила фиксов позволяет использовать творческие фильтры.

Минусы фиксов:

  • Необходимость много бегать во время съемки вместо того, чтобы просто крутить колесико на объективе.
  • Необходимость покупать дополнительные объективы для покрытия всех необходимых фокусных расстояний.
  • Необходимость иметь один зум для путешествий, чтобы не тянуть с собой весь набор фиксов.
  • Необходимость менять объективы во время съемки, когда приближение-отдаление ногами не помогает.
  • Необходимость использовать нейтрально-серый фильтр при хорошей светосиле объектива и открытой диафрагме в солнечный день.
  • Необходимость оперативной смены объектива в полевых условиях чревато загрязнением оптики.

Зум – это объектив с переменным фокусным расстоянием заданного диапазона, например, 18–55 мм или 24–70 мм.

Плюсы зумов:

  • Удобство при съемке: нет необходимости бегать вперед-назад при съемке крупных и общих планов.
  • Универсальность: нет необходимости брать разные объективы для съемки разных планов и жанров.

Минусы зумов: 

  • Большой вес – множество линз для охвата разных фокусных расстояний дают определенный вес, не особо комфортный при съемке с рук.
  • Малая светосила – из-за большого количества линз такие объективы пропускают меньше света, что будет критично при съемке в помещении и в темное время суток.
  • Отсутствие резкости – из-за того, что линз в зум-объективе много и они постоянно в движении, они физически не могут обеспечить такую резкую картинку, как фиксы.
  • Высокая стоимость – зумы производить сложнее, поэтому они стоят дороже аналогичных по качеству фиксов.
  • Быстрый износ – в сравнении с фиксами, зумы быстрее выходят из строя, так как в них больше подвижных элементов.

Достоинства и недостатки зумов и фиксов не однозначны, так как объектив нужно подбирать под конкретные задачи. Фикс 24 мм может идеально подходить для съемки интерьеров квартир, однако совсем не подойдет для съемки футбола. Поэтому при выборе объектива нужно опираться на личные предпочтения фотографа. 

Как фокусное расстояние объектива влияет на перспективу?

В связи с фокусным расстоянием объектива необходимо также пару слов сказать о перспективе.

Перспектива – это соотношение дистанций и размеров объекта съемки и остальных объектов кадра.

Широкоугольные объективы расширяют пространство так, что в кадр попадает больше объектов, чем на стандартный или длиннофокусный объектив. Например, если вы фотографируете девушку в узкой улочке Парижа на объектив 24 мм, то, кроме девушки, в кадр попадут противоположные стены домов этой улочки, брусчатка и небо с Эйфелевой башней вдалеке.

Дома на горизонте, кажется, очень далеко. Перспектива растянута.

Длиннофокусные объективы приближают не только объект съемки, но и задний план к объекту съемки. Например, если вы фотографируете девушку на фоне Эйфелевой башни на 135 мм, то будет казаться, что башня намного ближе к девушке, чем есть на самом деле.

Дома на горизонте, кажется, очень близко. Перспектива сжата.

Получается, что широкоугольные объективы (с небольшим фокусным) растягивают перспективу, а телеобъективы (с большим фокусным) сжимают ее. 

Как влияет фокусное расстояние объектива на размытие?

Красота размытия заднего плана – характеристика субъективная. 

Размытие зависит от многих факторов:

1. Строения линз объектива. Творческое размытие заднего плана, свойственное объективам типа Gelios 58 мм или Lensbaby 50 мм, является техническим браком оптики, однако эффект радиального размытия многим фотографам очень нравится.

2. Светосилы и значения диафрагмы. Чем светосильнее объектив, тем шире можно открыть диафрагму и получить меньшую глубину резко изображаемого пространства, то есть размыть задний план. 

3. Расстояния от фотографа до объекта и от объекта до фона. Степень размытия заднего плана будет тем больше, чем объект съемки отдален от фона.

4. Фокусного расстояния объектива.

Поскольку ширик позволяет взять в кадр больше пространства, то и размытого фона (обычно, неоднородного: небо, земля, деревья, здания) при открытой диафрагме в кадре будет больше; а телевик в кадр берет только объект съемки, а задний план за объектом приближает, за счет чего размытый фон при открытой диафрагме получается более однородным и красивым. 

На фото с мишкой показано, как меняется степень размытия фона в зависимости от фокусного расстояния при одинаковых настройках камеры. Поскольку на 105 мм перспектива сжата, то и размытый фон получился более однородным.

Как рассчитать фокусное расстояние для кропа?

Поскольку фокусное расстояние объектива – это расстояние от точки фокусировки до матрицы, и размер матрицы камеры не влияет на эту физическую величину. Однако размер матрицы влияет на конечное изображение. Давайте разберемся, каким образом.

Фулфрейм-камера – это камера с полноразмерной матрицей – дорогим сенсорным элементом, который улавливает лучи света и проявляет изображение. 

Кроп-камера – это камера с уменьшенной матрицей, которая была разработана для удешевления производства и доступности камер большинству фотолюбителей.

Объективы производятся как для фулфрейма, так и для кропа. 

Если объектив для фулфрейма надеть на кроп-камеру, то мы получим урезанное, более плотно кадрированное изображение, чем на фулфрейме. 

А если объектив для кропа надеть на фулфрейм, то, наоборот, у изображения появится виньетка в виде черной рамки. Правда, этого можно избежать, если в камере есть автокроп.

Слева объектив для фулфрейма, справа объектив для кропа. Зеленая – фулфрейм-матрица, желтая – кроп-матрица.

В зависимости от размера матрицы меняется угол обзора и размер изображения, получаемого на одинаковых фокусных расстояниях. 

Получается, что на угол обзора влияет не только фокусное расстояние объектива, но и размер матрицы фотоаппарата.

Зависимость улга обзора объектива от фокусного расстояния

Зависимость угла обзора объектива от размера матрицы камеры

Чтобы разобраться с тем, какому фокусному расстоянию соответствует тот или иной угол обзора объектива, было введено два понятия: кроп-фактор и эквивалентное фокусное расстояние.

Эквивалентное фокусное расстояние позволяет узнать, какое фокусное расстояние будет иметь объектив с таким же углом обзора на полнокадровой (или пленочной) фотокамере.

 Эта характеристика будет полезна тем, кто задумался о покупке новой фотокамеры с матрицей другого размера и хочет выбрать подходящую для нее оптику, узнать, как на новой камере будут работать его старые объективы.

Кроп-фактор – это условный множитель, отражающий изменение угла обзора объектива при его использовании с матрицами меньшего размера.

Например, диагональ матрицы формата APS-C меньше полнокадровой примерно в 1,5 раза. Так что кроп-фактор для матрицы APS-C будет равен 1,5.

А вот диагональ матрицы формата Nikon CX меньше полнокадровой в 2,7 раз. Поэтому ее кроп-фактор будет равняться 2,7. 

Теперь, зная кроп-фактор, мы сможем рассчитать и эквивалентное фокусное расстояние для объектива 50 мм. Чтобы на кроп-камере с объективом 50 мм получить такую же картинку, как на фулфрейм, нужно фокусное расстояние умножить на кроп-фактор.

50*1,5=75 мм (На кроп-камере с объективом 50 мм получится примерно такое же по размеру изображение, как на фулфрейм-камере с объективом 75 мм).

РЕЗЮМЕ

Теперь, зная все тонкости, на которые влияет фокусное расстояние объектива, вы сможете сделать правильный выбор. Самое главное, это ответить для себя на несколько вопросов:

  • В каком жанре фотографии вы снимаете? Для свадебной съемки зум-объектив предпочтительней, в то время как для портретов лучше подойдет портретный фикс. Для детских фотосессий на улице идеально подходит светосильный фикс 85 мм благодаря его светосиле и размытию.
  • Какая светосила объектива необходима? Если планируете использовать объектив в разных условиях освещения, вам понадобится светосила f-1.4, а для фотосессий на улице достаточно f-1.8-2.
  • Как часто вы будете менять оптику? Если в этом есть необходимость, вы можете приобрести три фикса, которые перекроют наиболее востребованный диапазон фокусных расстояний. А если менять объективы во время съемки неудобно, то лучше подумать про качественный зум.
  • Какой бюджет вы готовы выделить на покупку оптики? Если вы не уверены, приобретите для начала объектив с фокусным расстоянием 50 мм и светосилой f-1.8, а потом поймете, каких фокусных расстояний вам не хватает и докупите еще.

в социальных сетях 6823

Источник: https://www.blenda.by/blog/fokusnoe-rasstoyanie-obektiva-chto-eto-takoe-i-dlya-chego-ono-nuzhno/

Линзы. Фокусное расстояние линз. Оптическая сила линз. Формула тонкой линзы

Как определить фокусное расстояние линзы

Цели урока:

  • выяснить что такое линза, провести их классификацию, ввести понятия: фокус, фокусное расстояние, оптическая сила, линейное увеличение;
  • продолжить развитие умений решать задачи по теме.

Ход урока

Пою перед тобой в восторге похвалу
Не камням дорогим, ни злату, но СТЕКЛУ.

М.В. Ломоносов

В рамках данной темы вспомним, что такое линза; рассмотрим общие принципы построения изображений в тонкой линзе, а также выведем формулу для тонкой линзы.

Ранее познакомились с преломлением света, а также вывели закон преломления света.

Проверка домашнего задания

1) опрос § 65

2) фронтальный опрос (см. презентацию)

1.На каком из рисунков правильно показан ход луча, проходящего через стеклянную пластину, находящуюся в воздухе?

2. На каком из приведённых ниже рисунков правильно построено изображение в вертикально расположенном плоском зеркале?

3.Луч света переходит из стекла в воздух, преломляясь на границе раздела двух сред . Какое из направлений 1–4 соответствует преломленному лучу?

4. Котёнок бежит к плоскому зеркалу со скоростью V = 0,3 м/с. Само зеркало движется в сторону от котёнка со скоростью u = 0,05 м/с . С какой скоростью котёнок приближается к своему изображению в зеркале?

Изучение нового материала

Вообще, слово линза — это слово латинское, которое переводится как чечевица. Чечевица — это растение, плоды которого очень похожи на горох, но горошины не круглые, а имеют вид пузатых лепешек. Поэтому все круглые стекла, имеющие такую форму, и стали называть линзами.

Первое упоминание о линзах можно найти в древнегреческой пьесе Аристофана «Облака» (424 год до нашей эры), где с помощью выпуклого стекла и солнечного света добывали огонь. А возраст самой древней из обнаруженных линз более 3000 лет. Это так называемая линзаНимруда.

Она была найдена при раскопках одной из древних столиц Ассирии в Нимруде Остином Генри Лэйардом в 1853 году. Линза имеет форму близкую к овалу, грубо шлифована, одна из сторон выпуклая, а другая плоская.

В настоящее время она храниться в британском музее — главном историко-археологическом музее Великобритании.

Линза Нимруда

Итак, в современном понимании, линзы — это прозрачные тела, ограниченные двумя сферическими поверхностями.

(записать в тетрадь) Чаще всего используются сферические линзы, у которых ограничивающими поверхностями выступают сферы или сфера и плоскость.

В зависимости от взаимного размещения сферических поверхностей или сферы и плоскости, различают выпуклые и вогнутыелинзы. (Дети рассматривают линзы из набора «Оптика»)

В свою очередь выпуклые линзы делятся на три вида — плоско выпуклые, двояковыпуклые и вогнуто-выпуклая; а вогнутые линзы подразделяются на плосковогнутые, двояковогнутые и выпукло-вогнутые.

(записать)

Любую выпуклую линзы можно представить в виде совокупностей плоскопараллельной стеклянной пластинки в центре линзы и усеченных призм, расширяющихся к середине линзы, а вогнутую — как совокупностей плоскопараллельной стеклянной пластинки в центре линзы и усеченных призм, расширяющихся к краям.

Известно, что если призма будет сделана из материала, оптически более плотного, чем окружающая среда, то она будет отклонять луч к своему основанию.

Поэтому параллельный пучок света после преломления в выпуклой линзе станет сходящимся (такие называются собирающими), а в вогнутой линзе наоборот, параллельный пучок света после преломления станет расходящимся (поэтому такие линзы называются рассеивающими).

Для простоты и удобства, будем рассматривать линзы, толщина которых пренебрежимо мала, по сравнению с радиусами сферических поверхностей. Такие линзы называют тонкими линзами. И в дальнейшем, когда будем говорить о линзе, всегда будем понимать именно тонкую линзу.

Для условного обозначения тонких линз применяют следующий прием: если линза собирающая, то ее обозначают прямой со стрелочками на концах, направленными от центра линзы, а если линза рассеивающая, то стрелочки направлены к центру линзы.

Условное обозначение рассеивающей линзы

(записать)

Оптический центр линзы — это точка, пройдя через которую лучи не испытывают преломления.

Любая прямая, проходящая через оптический центр линзы, называется оптической осью.

Оптическую же ось, которая проходит через центры сферических поверхностей, которые ограничивают линзу, называют главной оптической осью.

Точка, в которой пересекаются лучи, падающие на линзу параллельно ее главной оптической оси (или их продолжения), называется главным фокусом линзы. Следует помнить, что у любой линзы существует два главных фокуса — передний и задний, т.к. она преломляет свет, падающий на нее с двух сторон. И оба этих фокуса расположены симметрично относительно оптического центра линзы.

Рассеивающая линза

(зарисовать)

Расстояние от оптического центра линзы до ее главного фокуса, называется фокусным расстоянием.

Фокальная плоскость — это плоскость, перпендикулярная главной оптической оси линзы, проходящая через ее главный фокус.
Величину, равную обратному фокусному расстоянию линзы, выраженному в метрах, называют оптической силой линзы. Она обозначается большой латинской буквой D и измеряется в диоптриях (сокращенно дптр).

(Записать)

Впервые, полученную нами формулу тонкой линзы, вывел Иоганн Кеплер в 1604 году. Он изучал преломления света при малых углах падения в линзах различной конфигурации.

Линейное увеличение линзы — это отношение линейного размера изображения к линейному размеру предмета. Обозначается оно большой греческой буквой G.

Решение задач (у доски) :

  • Стр 165 упр 33 (1,2)
  • Свеча находится на расстоянии 8 см от собирающей линзы , оптическая сила которой равна 10 дптр. На каком расстоянии от линзы получится изображение и каким оно будет ?
  • На каком расстоянии от линзы с фокусным расстоянием 12см надо поместить предмет , чтобы его действительное изображение было втрое больше самого предмета ?

Дома : §§ 66 №№1584, 1612-1615 (сборник Лукашика)

Итог урока

Источник: https://rosuchebnik.ru/material/linzy-fokusnoe-rasstoyanie-linz-opticheskaya-sila-linz-formula-tonkoy-linzy-7200/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.