Как построить правильный восьмиугольник

Содержание

Восьмиугольник, виды, свойства и формулы

Как построить правильный восьмиугольник

Восьмиугольник – это многоугольник, общее количество углов (вершин) которого равно восьми.

Восьмиугольник, выпуклый и невыпуклый восьмиугольник

Правильный восьмиугольник (понятие и определение)

Свойства правильного восьмиугольника

Формулы правильного восьмиугольника

Правильный восьмиугольник в природе, технике и культуре

Шестиугольник

Восьмиугольник, выпуклый и невыпуклый восьмиугольник:

Восьмиугольник – это многоугольник с восемью углами.

Восьмиугольник – это многоугольник, общее количество углов (вершин) которого равно восьми.

Восьмиугольник может быть выпуклым и невыпуклым.

Выпуклым многоугольником называется многоугольник, все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины. Невыпуклыми являются все остальные многоугольники.

Соответственно выпуклый восьмиугольник – это восьмиугольник, у которого все его точки лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.

Рис. 1. Выпуклый восьмиугольник

Рис. 2. Невыпуклый восьмиугольник

Сумма внутренних углов любого выпуклого восьмиугольника равна 1080°.

Правильный восьмиугольник (понятие и определение):

Правильный восьмиугольник (октагон) – это правильный многоугольник с восемью сторонами.

В свою очередь правильный многоугольник – это многоугольник, у которого все стороны и углы одинаковые.

Правильный восьмиугольник – это восьмиугольник, у которого все стороны равны, а все внутренние углы равны 135°.

Рис. 3. Правильный восьмиугольник

Правильный восьмиугольник имеет 8 сторон, 8 углов и 8 вершин.

Углы правильного восьмиугольника образуют восемь равнобедренных треугольников.

Правильный восьмиугольник можно построить с помощью циркуля и линейки: проведя к сторонам квадрата серединные перпендикуляры и соединив точки их пересечения с описанной окружностью квадрата с его сторонами.

Свойства правильного восьмиугольника:

1. Все стороны правильного восьмиугольника равны между собой.

a1 = a2 = a3 = a4= a5 = a6 = a7 = a8. 

2. Все углы равны между собой и составляют 135°.

α1 = α2 = α3 = α4 = α5 = α6 = α7 = α8 = 135°.

Рис. 4. Правильный восьмиугольник

3. Сумма внутренних углов любого правильного восьмиугольника равна 1035°.

4. Все биссектрисы углов между сторонами равны и проходят через центр правильного восьмиугольника O.

Рис. 5. Правильный восьмиугольник

5. Количество диагоналей правильного восьмиугольника равно 20.

Рис. 6. Правильный восьмиугольник

6. Центр вписанной окружности O1 совпадает с центром описанной окружности O2, что и образуют центр многоугольника O.

Рис. 7. Правильный восьмиугольник

Формулы правильного восьмиугольника:

Пусть a – сторона восьмиугольника, r – радиус окружности, вписанной в восьмиугольник, R – радиус описанной окружности восьмиугольника, k – константа восьмиугольника, P – периметр восьмиугольника, S – площадь восьмиугольника.

Формула константы правильного восьмиугольника:

Формула периметра правильного восьмиугольника:

Формулы площади правильного восьмиугольника:

Формулы радиуса окружности, вписанной в правильный восьмиугольник:

Формулы радиуса окружности, описанной вокруг правильного восьмиугольника:

Формулы стороны правильного восьмиугольника:

Правильный восьмиугольник в природе, технике и культуре:

В странах, принявших Венскую конвенцию о дорожных знаках и сигналах (в том числе в России), а также во многих других странах, знак «Движение без остановки запрещено» имеет вид красного правильного восьмиугольника.

Форма правильного восьмиугольника часто используются в изобразительном искусстве, архитектуре.

Например, Собор Святого Георгия (Аддис-Абеба, Эфиопия), Купол Скалы (Иерусалим, Израиль), башня Ветров (Афины, Греция), Сан-Витале (в городе Равенна, Италия), Замок Кастель-дель-Монте (Апулия, Италия), Флорентийский баптистерий (Флоренция, Италия), Ахенский собор (Ахен, Германия), Капелла Карла Великого (Ахен, Германия).

Прямоугольник

Прямоугольный треугольник

Равнобедренный треугольник

Равносторонний треугольник

Шестиугольник

Примечание: © Фото https://www.pexels.com, https://pixabay.com

Еще технологии…

карта сайта

Источник: https://xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai/vosmiugolnik-vidyi-svoystva-i-formulyi/

Построение правильного шестиугольника и его свойства: углы, площадь и радиусы окружностей; интересные факты

Как построить правильный восьмиугольник

Тему многоугольников проходят в школьной программе, но не уделяют ей достаточного внимания. А между тем она интересна, и особенно это касается правильного шестиугольника или гексагона — ведь эту форму имеют многие природные объекты. К ним относятся пчелиные соты и многое другое. Эта форма очень хорошо применяется на практике.

Правильным шестиугольником называется плоскостная фигура, имеющая шесть равных по длине сторон и столько же равных углов.

Если вспомнить формулу суммы углов многоугольника

180°(n-2),

то получается, что в этой фигуре она равна 720°. Ну а поскольку все углы фигуры равны, нетрудно посчитать, что каждый из них равен 120°.

Начертить шестиугольник очень просто, для этого достаточно циркуля и линейки.

Пошаговая инструкция будет выглядеть так:

  1. чертится прямая линия и на ней ставится точка;
  2. из этой точки строится окружность (она является ее центром);
  3. из мест пересечения окружности с линией строятся еще две таких же, они должны сойтись в центре.
  4. после этого отрезками последовательно соединяются все точки на первой окружности.

При желании можно обойтись и без линии, начертив пять равных по радиусу окружностей.

Полученная таким образом фигура будет правильным шестиугольником, и это можно доказать ниже.

Свойства простые и интересные

Чтобы понять свойства правильного шестиугольника, его имеет смысл разбить на шесть треугольников:

Это поможет в дальнейшем нагляднее отобразить его свойства, главные из которых:

  1. диаметр описанной окружности;
  2. диаметр вписанной окружности;
  3. площадь;
  4. периметр.

Описанная окружность и возможность построения

Вокруг гексагона можно описать окружность, и притом только одну. Поскольку фигура эта правильная, то можно поступить довольно просто: от двух соседних углов провести внутрь биссектрисы. Они пересекутся в точке О, и образуют вместе со стороной между ними треугольник.

Углы между стороной гексагона и биссектрисами будут по 60°, поэтому можно определенно сказать, что треугольник, к примеру, АОВ — равнобедренный. А поскольку третий угол тоже будет равен 60°, то он еще и равносторонний. Отсюда следует, что отрезки ОА и ОВ равны, значит, могут служить радиусом окружности.

После этого можно перейти к следующей стороне, и из угла при точке С тоже вывести биссектрису.

Получится очередной равносторонний треугольник, причем сторона АВ будет общей сразу для двух, а ОС — очередным радиусом, через который идет та же окружность.

Всего таких треугольников получится шесть, и у них будет общая вершина в точке О. Получается, что описать окружность будет можно, и она всего одна, а ее радиус равен стороне гексагона:

R=а.

Именно поэтому и возможно построение этой фигуры с помощью циркуля и линейки.

Ну а площадь этой окружности будет стандартная:

S=πR²

Вписанная окружность

Центр описанной окружности совпадет с центром вписанной. Чтобы в этом убедиться, можно провести из точки О перпендикуляры к сторонам шестиугольника.

Они будут являться высотами тех треугольников, из которых составлен гексагон. А в равнобедренном треугольнике высота является медианой по отношению к стороне, на которую она опирается.

Таким образом, эта высота не что иное, как серединный перпендикуляр, являющийся радиусом вписанной окружности.

Высота равностороннего треугольника вычисляется просто:

h²=а²-(а/2)²= а²3/4, h=а(√3)/2

А поскольку R=a и r=h, то получается, что

r=R(√3)/2.

Таким образом, вписанная окружность проходит через центры сторон правильного шестиугольника.

Ее площадь будет составлять:

S=3πa²/4,

то есть три четверти от описанной.

Периметр и площадь

С периметром все ясно, это сумма длин сторон:

P=6а, или P=6R

А вот площадь будет равна сумме всех шести треугольников, на которые можно разбить гексагон. Поскольку площадь треугольника вычисляется как половина произведения основания на высоту, то:

S=6(а/2)(а(√3)/2)= 6а²(√3)/4=3а²(√3)/2 или

S=3R²(√3)/2

Желающим вычислять эту площадь через радиус вписанной окружности можно сделать и так:

S=3(2r/√3)²(√3)/2=r²(2√3)

Занимательные построения

В гексагон можно вписать треугольник, стороны которого будут соединять вершины через одну:

Всего их получится два, и их наложение друг на друга даст звезду Давида. Каждый из этих треугольников — равносторонний. В этом нетрудно убедиться. Если посмотреть на сторону АС, то она принадлежит сразу двум треугольникам — ВАС и АЕС. Если в первом из них АВ=ВС, а угол между ними 120°, то каждый из оставшихся будет 30°. Отсюда можно сделать закономерные выводы:

  1. Высота АВС из вершины В будет равна половине стороны шестиугольника, поскольку sin30°=1/2. Желающим убедиться в этом можно посоветовать пересчитать по теореме Пифагора, она здесь подходит как нельзя лучше.
  2. Сторона АС будет равна двум радиусам вписанной окружности, что опять-таки вычисляется по той же теореме. То есть АС=2(a(√3)/2)=а(√3).
  3. Треугольники АВС, СДЕ и АЕF равны по двум сторонам и углу между ними, и отсюда вытекает равенство сторон АС, СЕ и ЕА.

Пересекаясь друг с другом, треугольники образуют новый гексагон, и он тоже правильный. Доказывается это просто:

  1. Угол АВF равен углу ВАС. Таким образом, получившийся треугольник с основанием АВ и безымянной вершиной напротив него — равнобедренный.
  2. Все такие же треугольники, основанием которых служит сторона гексагона, равны по стороне и прилегающей к ней углам.
  3. Треугольники при вершинах гексагона являются равносторонними и равными, что вытекает из предыдущего пункта.
  4. Углы новообразованного шестиугольника равняются 360-120-60-60=120°.

Таким образом, фигура отвечает признакам правильного шестиугольника — у нее шесть равных сторон и углов. Из равенства треугольников при вершинах легко вывести длину стороны нового гексагона:

d=а(√3)/3

Она же будет радиусом описанной вокруг него окружности. Радиус вписанной будет вдвое меньше стороны большого шестиугольника, что было доказано при рассмотрении треугольника АВС. Его высота составляет как раз половину стороны, следовательно, вторая половина — это радиус вписанной в маленький гексагон окружности:

r₂=а/2

Площадь нового шестиугольника можно посчитать так:

S=(3(√3)/2)(а(√3)/3)²=а(√3)/2

Получается, что площадь гексагона внутри звезды Давида в три раза меньше, чем у большого, в который вписана звезда.

Свойства шестиугольника очень активно используются как в природе, так и в различных областях деятельности человека. В первую очередь это касается болтов и гаек — шляпки первых и вторые представляют собой ничто иное, как правильный шестигранник, если не брать в расчет фаски. Размер гаечных ключей соответствует диаметру вписанной окружности — то есть расстоянию между противоположными гранями.

Нашла свое применение и гексагональная плитка. Она распространена куда меньше четырехугольной, но класть ее удобнее: в одной точке смыкаются три плитки, а не четыре. Композиции могут получаться очень интересные:

Выпускается и бетонная плитка для мощения.

Распространенность гексагона в природе объясняется просто. Таким образом, проще всего плотно уместить круги и шары на плоскости, если у них одинаковый диаметр. Из-за этого у пчелиных сот такая форма.

Источник: https://tokar.guru/metallicheskie-izdeliya/profili-ugolki-shvellery/pravilnyy-shestiugolnik-i-ego-svoystva.html

Построение с помощью циркуля и линейки – описание, алгоритмы и задачи

Как построить правильный восьмиугольник

Построение с помощью циркуля и линейки – древнейший способ расчета в евклидовой геометрии. Известен со времен Древней Греции. Данная тема изучается в средних и старших классах на уроках геометрии.

Рассмотрим все случаи построения на конкретных примерах.

Построение отрезка, равного данному

Есть отрезок СD. Задача – начертить равнозначный данному отрезок той же величины.

Строится луч, имеющий начало в т. A. Циркуль отмеряет существующий отрезок CD. Циркулем откладывается отрезок, равнозначный первому отрезку, на том же начерченном луче от его начала (A). 

Для подобного чертежа ножку с иглой закрепляют в начале луча A, а с помощью части с грифелем проводится дуга до места соприкосновения с лучом. Данную точку можно обозначить т. B. 

Отрезок AB будет равнозначен отрезку СD. Задача решена.

Деление отрезка пополам

Имеется отрезок AB.

Сначала следует нарисовать окружность с радиусом больше половины отрезка AB с центром в т. A.

Далее чертится круг с тем же радиусом с серединой в т. B. В местах пересечения окружностей имеем т. C и т. D.

Сквозь эти точки требуется провести прямую линию. Получаем т. E, которая будет серединой отрезка AB.

Построение угла, равного данному

Имеется угол ABC.

Вблизи угла проводится луч ED. Далее чертится окружность с серединой в т. B. В итоге имеем точки M и N.

Оставив раствор циркуля прежним, рисуют круг с серединой в т. E. В точке соприкосновения имеем т. K.

Поменяв раствор циркуля на длину расстояния между т. M и т. N, нужно провести окружность с серединой в т. K. В итоге получается т. F. После чертится прямая из т. E через т. F. Образуется угол DEF, который будет равнозначен углу ABC. Задача решена.

Пример 1

Точка O находится на прямой a.

Есть прямая и точка, находящаяся на ней. Нанести линию, идущую через существующую точку и находящуюся под прямым углом к имеющейся прямой.

  1. Шаг 1. Чертим круг с рандомным радиусом r с серединой в т. O. Окружность соприкасается с прямой в т. A и т. B.

  2. Шаг 2. Из имеющихся точек строится круг с радиусом AB. Точки С и D являются точками соприкосновения окружностей.

Приложив линейку, чертят прямую, сквозь т. O и одну из т. C или т. D, к примеру отрезок OC.

Доказательство, что прямая OC лежит перпендикулярно a.

Намечаются два отрезка – AC и CB. Получившиеся треугольники будут равны, согласно третьему признаку равенства треугольников. Значит, прямая CO перпендикулярна AB.

Пример 2

Точка O находится вне прямой а.

Нарисовать окружность с радиусом r из т. O. Она должна проходить сквозь прямую a. A и B — точки её соприкосновения с прямой.

Оставив прежний радиус, рисуем окружности с серединой в т. A и т. B. Точка O1 – место их соприкосновения.

Рисуем линию, соединяющая т. O и т. O1.

Доказательство выглядит следующим образом.

Две прямые ОО1 и AB пересекаются в т. C. Согласно третьему признаку равенства всех треугольников AOB = BO1A. Из данного вывода следует, что угол OAC = O1AC. Одноименные треугольники также будут равны (согласно первому признаку равенства всех треугольников). 

Исходя из этого, выводим, что угол OCA = O1CA, а, учитывая смежность углов, приходим к пониманию, что они прямые. А это означает, что OC – перпендикулярный отрезок, опущенный из т. O на прямую a. Задача решена.

Построение параллельных (непересекающихся) прямых

Имеется прямая и т. А, не лежащая на этой прямой.

Нужно отметить прямую, проходящую через т. A, и параллельную имеющейся прямой.

Берется рандомная точка на имеющейся прямой и именуется B. С помощью циркуля строится окружность радиуса AB с серединой в т. B. В месте пересечения окружности и данной прямой отмечается т. C.

Оставив прежний радиус, рисуется еще одна окружность, теперь уже с центром в т. C. При правильных расчетах дуга должна пройти через т. B.

C тем же радиусом AB строится окружность с серединой в т. A. Точку соприкосновения второй и третьей окружностей назовем D. Третья окружность, учитывая верность расчетов, также пройдет через т. B.

Проводится прямая через т. A и т. D, которая станет параллельной первой. В итоге, получились две параллельные прямые, BC и AD.

Задача решена.

Построение правильного треугольника, вписанного в окружность

Правила построения правильного треугольника, вписанного в окружность:

Отметить отрезок AB, чья длина будет равняться а.

Взять циркуль. Часть с иголкой расположить на т. А, а часть с карандашом на т. B. Прочертить окружность. В итоге, радиус круга будет равнозначен длине отрезка AB.

Далее иглу размещают на т. B, а часть с грифелем на т. A. Чертится круг. В итоге, его радиус будет равнозначен длине отрезка AB.

На чертеже окружности пересеклись в двух точках. Далее нужно соединить т. A и т. B и одну из вышеупомянутых точек. В результате получится равносторонний треугольник.

Стороны такого треугольника равнозначны радиусам двух окружностей, которые равны длине а. Задача решена.

Вариант 1

Исходя из данности, что диагонали любого квадрата пересекаются в середине окружности и находятся по отношению к его осям под углом 45 градусов, производят следующие действия. Пользуясь линейкой и уголком с углами 45 градусов (см. рисунок), размечают вершины т. 1 и т. 3. 

Сквозь данные точки чертят отрезки, стороны четырехугольника, расположенные по горизонтали. Это т. 4 и т. 1, т. 3 и т. 2. В конце линейкой и уголком по его катету проводятся линии, расположенные по вертикали (высоты), отрезок т.1 — т. 2 и отрезок т. 4 — т. 3.

Вариант 2

Так как вершины правильного четырехугольника разделяют наполовину дуги окружностей, между точками диаметра (см. рисунок), то для достижения результата делают следующее: отмечают на точках перпендикулярных диаметров т. A, т. B и т. C и рисуют дуги до их соприкосновения. 

После чертят прямые через места соприкосновения дуг, которые выделены на фигуре линиями. Точки соприкосновения с окружностью будут являться вершинами — это т. 1 и т. 3, т. 4 и т. 2. Данные вершины полученного квадрата соединяют друг с другом.

Задача выполнена двумя способами.

Построение вписанного в окружность правильного пятиугольника

Поместить на окружность т. 1, считая ее за вершину пятиугольника. Разделить отрезок AO пополам. Чтобы произвести подобную операцию, из т. A чертят дугу до места соприкосновения с окружностью в т. M и т. B. 

Расположив конкретные точки на прямой, получаем т. K, и после совмещаем с т. 1. Радиусом, длина которого – отрезок А1, сделать изгиб из т. K до места соприкосновения с линией АО в т. H. После совместить т. 1 и т. H, образуя одну из пяти сторон пятиугольника. 

Взять циркуль, величина раствора которого будет равна отрезку т.1 — т. H, нарисовать изгиб из т. 1 до соприкосновения с кругом. Так находят вершины 2 и 5. Отметив точки на вершинах 2 и 5, получают вершины 3 и 4. В конце все точки совмещают друг с другом.

Задача выполнена.

Построение правильного шестиугольника, вписанного в окружность

Решение подобной задачи строится на свойствах, где сторона шестиугольника равнозначна радиусу круга. 

Для расчета разделяют круг на шесть ровных частей и последовательно совмещают все полученные точки (см. рисунок). Задача решена.

Источник: https://nauka.club/matematika/geometriya/postroenie-s-pomoshchyu-tsirkulya-i-lineyki.html

Правильный восьмиугольник

Как построить правильный восьмиугольник

TR | UK | KK | BE | EN |
правильный восьмиугольник, как построить правильный восьмиугольник
Правильный многоугольник

Рёбра

8Символ Шлефли

{8}, t{4}Диаграмма Коксетера-ДынкинаВид симметрии

Диэдрическая группа (D8)Площадь

2 cot ⁡ π 8 a 2 {\displaystyle 2\cot {\frac {\pi }{8}}a{2}} = 2 ( 1 + 2 ) a 2 ≃ 4.828 a 2 . {\displaystyle =2(1+{\sqrt {2}})a{2}\simeq 4.828\,a{2}.}Внутренний угол (градусы)

135°Свойства

выпуклый, вписанный, равносторонний, равноугольный, изотоксальныйШаблон: Просмотр • Обсуждение • Править

Правильный восьмиугольник (октагон) — геометрическая фигура из группы правильных многоугольников. У него восемь сторон и восемь углов, все углы и стороны равны между собой.

Правильный восьмиугольник имеет символ Шлефли {8} и может быть построен также как квазиправильный усечённый квадрат, t{4}, в котором перемежаются два типа граней. Усечённый восьмиугольник (t{8}) является шестнадцатиугольником (t{16}).

  • 1 Свойства
  • 2 Формулы расчёта параметров правильного восьмиугольника
  • 3 Площадь через квадрат
  • 4 Симметрия
  • 5 Разрезание правильного восьмиугольника
  • 6 Применение восьмиугольников
  • 7 Производные фигуры
    • 7.1 Связанные многогранники
  • 8 См. также
  • 9 Примечания
  • 10 Литература

Свойства

Построение правильного восьмиугольника Построение правильного 8-угольника путём складывания листа бумаги

  • Восьмиугольник можно построить проведя к сторонам квадрата серединные перпендикуляры и соединив точки их пересечения с описанной окружностью квадрата с его сторонами.
  • Сумма всех внутренних углов правильного восьмиугольника составляет 1080°
  • Угол правильного восьмиугольника составляет 135 ∘ {\displaystyle 135{\circ }}

Формулы расчёта параметров правильного восьмиугольника

Пример:

  • t — длина стороны восьмиугольника
  • r — радиус вписанной окружности
  • R — радиус описанной окружности
  • S — площадь восьмиугольника
  • k — константа, равная ( 1 + 2 ) {\displaystyle (1+{\sqrt {2}})} ≈ 2,414213562373095

Так как правильный восьмиугольник можно получить соответствующим отсечением углов квадрата со стороной k t {\displaystyle kt} , радиус вписанной окружности, радиус описанной окружности и площадь правильного восьмиугольника можно вычислить и без использования тригонометрических функций:

  • Радиус вписанной окружности правильного восьмиугольника:

r = k 2 t {\displaystyle r={\frac {k}{2}}t}

  • Радиус описанной окружности правильного восьмиугольника:

R = t k k − 1 {\displaystyle R=t{\sqrt {\frac {k}{k-1}}}}

  • Площадь правильного восьмиугольника:

Через сторону восьмиугольника

S = 2 k t 2 = 2 ( 1 + 2 ) t 2 ≃ 4.828 t 2 . {\displaystyle S=2kt{2}=2(1+{\sqrt {2}})t{2}\simeq 4.828\,t{2}.}

Через радиус описанной окружности

S = 4 sin ⁡ π 4 R 2 = 2 2 R 2 ≃ 2.828 R 2 . {\displaystyle S=4\sin {\frac {\pi }{4}}R{2}=2{\sqrt {2}}R{2}\simeq 2.828\,R{2}.}

Через апофему (высоту)

A = 8 tan ⁡ π 8 r 2 = 8 ( 2 − 1 ) r 2 ≃ 3.314 r 2 . {\displaystyle A=8\tan {\frac {\pi }{8}}r{2}=8({\sqrt {2}}-1)r{2}\simeq 3.314\,r{2}.}

Площадь через квадрат

Площадь правильного восьмиугольника можно вычислить как площадь усечённого квадрата.

Площадь можно также вычислить как усечение квадрата

S = A 2 − a 2 , {\displaystyle \,\!S=A{2}-a{2},}

где A — ширина восьмиугольника (вторая меньшая диагональ), а a — длина его стороны. Это легко показать, если провести через противоположные стороны прямые, что даст квадрат. Легко показать, что угловые треугольники равнобедренные с основанием, равным a. Если их сложить (как на рисунке), получится квадрат со стороной a.

Если задана сторона a, то длина A равна

A = a 2 + a + a 2 = ( 1 + 2 ) a ≈ 2.414 a . {\displaystyle A={\frac {a}{\sqrt {2}}}+a+{\frac {a}{\sqrt {2}}}=(1+{\sqrt {2}})a\approx 2.414a.}

Тогда площадь равна:

S = ( ( 1 + 2 ) a ) 2 − a 2 = 2 ( 1 + 2 ) a 2 ≈ 4.828 a 2 . {\displaystyle S=((1+{\sqrt {2}})a){2}-a{2}=2(1+{\sqrt {2}})a{2}\approx 4.828a{2}.}

Площадь через A (ширину восьмиугольника)

S = 2 ( 2 − 1 ) A 2 ≈ 0.828 A 2 . {\displaystyle S=2({\sqrt {2}}-1)A{2}\approx 0.828A{2}.}

Ещё одна простая формула площади:

  S = 2 a A . {\displaystyle \ S=2aA.}

Часто значение A известно, в то время как величину стороны a следует найти, как, например, при отрезании от квадратного куска материала углов с целью получения правильного восьмиугольника. Из формул выше имеем

a ≈ A / 2.414. {\displaystyle a\approx A/2.414.}

Два катета углового треугольника можно получить по формуле

e = ( A − a ) / 2. {\displaystyle \,\!e=(A-a)/2.}

Симметрия

11 симметрий правильного восьмиугольника. Линии зеркальных отражений показаны цветом — синие линии проходят через вершины, фиолетовые проходят через середины рёбер, число поворотов указано в центре.

Вершины раскрашены согласно симметрии.

Правильный восьмиугольник имеет группу симметрии Dih8 порядка 16. Имеется 3 диэдральные подгруппы — Dih4, Dih2 и Dih1, а также 4 циклические подгруппы — Z8, Z4, Z2 и Z1.

Последняя подгруппа подразумевает отсутствие симметрии.

Правильный восьмиугольник имеет 11 различных симметрий. Джон Конвей обозначил полную симметрию как r16 .

Диэдральные симметрии делятся на симметрии, проходящие через вершины (обозначены как d — от diagonal), или через рёбра (обозначены как p — от perpendiculars).

Циклические симметрии в среднем столбце обозначены буквой g и для них указан порядок группы вращения. Полная симметрия правильного восьмиугольника обозначена как r16 а отсутствие — как a1.

Примеры восьмиугольников по их симметриям

r16d8g8p8d4g4p4d2g2p2a1

На рисунке слева показаны типы симметрий восьмиугольников.

Наиболее общие симметрии восьмиугольников — p8, равноугольный восьмиугольник, построенный четырьмя зеркалами и имеющий перемежающиеся длинные короткие стороны, и d8, изотоксальный восьмиугольник, имеющий рёбра равной длины, но вершины имеют два разных внутренних угла. Эти две формы являются двойственным друг другу и имеют порядок, равный половине симметрии правильного восьмиугольника.

Каждая подгруппа симметрии даёт одну или более степеней свободы для неправильных форм. Только подгруппа g8 не имеет степеней свободы, но может рассматриваться как имеющая ориентированные рёбра.

Разрезание правильного восьмиугольника

Коксетер утверждает, что любой 2m-угольник с параллельными противоположными сторонами можно разрезать на m(m-1)/2 ромбов. Для восьмиугольника m=4 и он разрезается на 6 ромбов, как показано на рисунке ниже. Это разрезание можно рассматривать как 6 из 24 граней проекции многоугольника Петри тессеракта .

Разрезание правильного восьмиугольника

На 6 ромбовТессеракт

Применение восьмиугольников

Российский дорожный знак «STOP» Восьмиугольный план Купола Скалы.

В странах, принявших Венскую конвенцию о дорожных знаках и сигналах (в том числе в России), а также во многих других странах, знак «STOP» имеет вид красного восьмиугольника.

В мультфильме Приключения Джеки Чана магические талисманы имеют форму правильного восьмиугольника.

Восьмиугольные формы часто используются в архитектуре. Купол Скалы имеет восьмиугольный план. Башня Ветров в Афинах — ещё один пример восьмиугольной структуры.

Восьмиугольный план встречается также в архитектуре церквей, таких как Собор Святого Георгия (Аддис-Абеба), Сан-Витале (в городе Равенна, Италия), Замок Кастель-дель-Монте (Апулия, Италия), Флорентийский баптистерий и восьмиугольные церкви Норвегии.

Центральное пространство в Ахенский собор, Капелла Карла Великого имеют планы в виде правильного восьмиугольника.

Другие использования

  • Зонты часто имеют восьмиугольную форму.
  • Знаменитый туркменский ковёр использует восьмиугольный узор.
  • Триграммы (даосизм) часто представляются восьмиугольниками
  • Знаменитая восьмиугольная чашка с острова Белитунг
  • Лабиринт Реймсского собора.

Производные фигуры

  • Усечённая квадратная мозаика имеет 2 восьмиугольника около каждой вершины.
  • Восьмиугольная призма содержит две восьмиугольные грани.
  • Восьмиугольная антипризма содержит две восьмиугольные грани.
  • Усечённый кубооктаэдр содержит 6 восьмиугольных граней.
  • Всеусечённые кубические соты

Связанные многогранники

Восьмиугольник в качестве усечённого квадрата, является первым в последовательности усечённых гиперкубов:

Усечённые гиперкубы

ВосьмиугольникУсечённый кубУсечённый тессерактУсечённый 5-кубУсечённый 6-кубУсечённый 7-кубУсечённый 8-куб

Восьмиугольник в качестве растянутого квадрата является первым в последовательности растянутых гиперкубов:

Расширенные гиперкубы

ОктаэдрРомбокубооктаэдрОбструганный тессерактОбрубленный 5-кубПятиогранённый 6-кубШестилгранённый 7-кубСемиогранённый 8-куб

См. также

  • Восьмерик
  • Восьмиугольное число
  • Октаграмма
  • Площадь Октогон в Будапеште, Венгрия
  • Сглаженный восьмиугольник

Примечания

  1. Wenninger, 1974, с. 9.
  2. Conway, Burgiel, Goodman-Strauss, 2008, с. 275-278.
  3. Болл, Коксетер, 1986, с. 155-157.

Литература

  • У. Болл, Г. Коксетер. Математические эссе и развлечения. — Москва: «Мир», 1986.
  • Magnus J. Wenninger. Polyhedron Models. — Cambridge University Press. — ISBN 9780521098595. Есть перевод на русский Веннинджер, Модели многогранников, но в ней символы Шлефли не приведены.
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss. Chapter 20, Generalized Schaefli symbols, Types of symmetry of a polygon // The Symmetries of Things. — 2008. — С. 275-278. — ISBN 978-1-56881-220-5.

п·о·р Многоугольники 

По числу сторон

Правильные

Треугольники

Четырёхугольники

См. также

Одноугольник • Двуугольник • Треугольник • Четырёхугольник • Пятиугольник • Шестиугольник • Семиугольник • Восьмиугольник • Девятиугольник • Десятиугольник • Одиннадцатиугольник • Двенадцатиугольник
ВыпуклыеТреугольник • Квадрат • Пятиугольник • Шестиугольник • Семиугольник • Восьмиугольник • Девятиугольник • 17-угольник • 257-угольник • 65537-угольник
ЗвёздчатыеЗвезды (Пентаграмма • Гексаграмма • Октаграмма • Звезда Лакшми)
Равнобедренный • Правильный • Прямоугольный
Вписанный • Описанный • Внеописанный • Параллелограмм • Антипараллелограмм • Прямоугольник • Золотой прямоугольник • Ромб • Ромбоид • Трапеция • Дельтоид • Квадрат • Единичный квадрат • Ламберта
Принадлежность точки многоугольнику • Теорема Бойяи — Гервина • Теорема Брахмагупты • Теорема Гаусса — Ванцеля • Формула Пика • Теорема о сумме углов многоугольника • Соотношение Бретшнайдера

как построить правильный восьмиугольник, правильный восьмиугольник

Правильный восьмиугольник Информацию О

Правильный восьмиугольник

Правильный восьмиугольник
Правильный восьмиугольник Вы просматриваете субъект
Правильный восьмиугольник что, Правильный восьмиугольник кто, Правильный восьмиугольник описание

There are excerpts from wikipedia on this article and video

Наш сайт имеет систему в функции поисковой системы. Выше: “что вы искали?”вы можете запросить все в системе с коробкой. Добро пожаловать в нашу простую, стильную и быструю поисковую систему, которую мы подготовили, чтобы предоставить вам самую точную и актуальную информацию.

Поисковая система, разработанная для вас, доставляет вам самую актуальную и точную информацию с простым дизайном и системой быстрого функционирования. Вы можете найти почти любую информацию, которую вы ищете на нашем сайте.

На данный момент мы служим только на английском, турецком, русском, украинском, казахском и белорусском языках.
Очень скоро в систему будут добавлены новые языки.

Жизнь известных людей дает вам информацию, изображения и видео о сотнях тем, таких как политики, правительственные деятели, врачи, интернет-сайты, растения, технологические транспортные средства, автомобили и т. д.

, t{4} Диаграмма Коксетера-Дынкина Вид симметрии Диэдрическая группа (D8) Площадь 2 cot”,”word_count”:1537,”direction”:”ltr”,”total_pages”:1,”rendered_pages”:1}

Источник: https://www.turkaramamotoru.com/ru/%D0%9F%D1%80%D0%B0%D0%B2%D0%B8%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9-%D0%B2%D0%BE%D1%81%D1%8C%D0%BC%D0%B8%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA-292678.html

Как построить правильный восьмиугольник | Сделай все сам

Как построить правильный восьмиугольник

В черчении зачастую требуется строить положительные многоугольники. Так, скажем, положительные восьмиугольники применяются на щитах дорожных знаков.

Вам понадобится

  • – циркуль
  • – линейка
  • – карандаш

Инструкция

1. Пускай задан отрезок, равный длине стороны желанного восьмиугольника. Требуется возвести верный восьмиугольник. Первым шагом постройте равнобедренный треугольник на заданном отрезке, применяя отрезок, как основание.

Для этого вначале постройте квадрат со стороной, равной отрезку, проведите в нем диагонали.

Сейчас постройте биссектрисы углов при диагоналях (на рисунке биссектрисы указаны синим), на пересечении биссектрис образуется вершина равнобедренного треугольника, стороны которого равны радиусу окружности, описанной вокруг верного восьмиугольника.

2. Постройте окружность с центром в вершине треугольника. Радиус окружности равен стороне треугольника. Сейчас разведите циркуль на расстояние, равное величине заданного отрезка. Отложите это расстояние на окружности, начиная от всякого конца отрезка. Объедините все полученные точки в восьмиугольник.

3. Если же задана окружность, в которую должен быть вписан восьмиугольник, то построения будут еще проще.

Постройте две перпендикулярные друг другу осевые линии, проходящие через центр окружности. На пересечении осевых и окружности получатся четыре вершины грядущего восьмиугольника.

Осталось поделить расстояние между этими точками на дуге окружности напополам, дабы получить еще четыре вершины.

Совет 2: Как возвести положительный треугольник

Верный треугольник – тот, у которого все стороны владеют идентичной длиной. Исходя из этого определения, построение сходственной разновидности треугольник а является нетрудной задачей.

Вам понадобится

  • Линейка, лист разлинованной бумаги, карандаш

Совет 3: Как нарисовать восьмиугольник

Восьмиугольник – это, по своей сути, два квадрата, смещенных касательно друг друга на 45° и объединенных на вершинах цельной линией.

А потому, для того дабы положительно изобразить такую геометрическую фигуру, нужно твердым карандашом дюже опрятно, по правилам начертить квадрат либо круг, с которыми и проводить последующие действия. Изложение ориентировано на длину стороны, равной 20 см.

А значит, при расположении чертежа рассматривайте, дабы вертикальная и горизонтальная линии длиной 20 см умещались на листе бумаги.

Вам понадобится

  • Линейка, прямоугольный треугольник, транспортир, карандаш, циркуль, лист бумаги

Совет 4: Как нарисовать положительный восьмиугольник

Верный восьмиугольник – это геометрическая фигура, у которой всякий угол составляет 135?, и все стороны между собою равны. Эта фигура дюже зачастую используется в архитектуре, к примеру, при постройке колон, а также при изготовлении дорожного знака STOP. Как же нарисовать положительный восьмиугольник?

Вам понадобится

  • – альбомный лист;
  • – карандаш;
  • – линейка;
  • – циркуль;
  • – ластик.
Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.