Как вычислить площадь фигуры, ограниченной графиками функций

Вычисление площадей плоских фигур с помощью интеграла

Как вычислить площадь фигуры, ограниченной графиками функций

На этом уроке будем учиться вычислять площади плоских фигур, которые называются криволинейными трапециями.

Примеры таких фигур – на рисунке ниже.

С одной стороны, найти площадь плоской фигуры с помощью определённого интеграла предельно просто. Речь идёт о площади фигуры, которую сверху ограничивает некоторая кривая, снизу – ось абсцисс (Ox), а слева и справа – некоторые прямые. Простота в том, что определённый интеграл функции, которой задана кривая, и есть площадь такой фигуры (криволинейной трапеции).

Но здесь нас подстерегают некоторые важные нюансы, без понимания которых не решить большинство задач на это практическое приложение определённого интеграла. Учтём эти нюансы и будем во всеоружии.

Для вычисления площади фигуры нам понадобятся:

  1. Определённый интеграл от функции, задающей кривую, которая ограничивает криволинейную трапецию сверху. И здесь возникает первый существенный нюанс: криволинейная трапеция может быть ограничена кривой не только сверху, но и снизу. Как действовать в этом случае? Просто, но это важно запомнить: интеграл в этом случае берётся со знаком минус.
  2. Пределы интегрирования a и b, которые находим из уравнений прямых, ограничивающих фигуру слева и справа: x = a, x = b, где a и b – числа.

Отдельно ещё о некоторых нюансах.

Кривая, которая ограничивает криволинейную трапецию сверху (или снизу) должна быть графиком непрерывной и неотрицательной функции y = f(x).

Значения “икса” должны принадлежать отрезку [a, b]. То есть не учитываются такие, например, линии, как разрез гриба, у которого ножка вполне вписывается в этот отрезок, а шляпка намного шире.

Боковые отрезки могут вырождаться в точки. Если вы увидели такую фигуру на чертеже, это не должно вас смущать, так как эта точка всегда имеет своё значение на оси “иксов”. А значит с пределами интегрирования всё в порядке.

Теперь можно переходить к формулам и вычислениям. Итак, площадь s криволинейной трапеции может быть вычислена по формуле

 (1).

Если же f(x) ≤ 0 (график функции расположен ниже оси Ox), то площадь криволинейной трапеции может быть вычислена по формуле

. (2)

Есть ещё случаи, когда и верхняя, и нижняя границы фигуры – функции, соответственно y = f(x) и y = φ(x), то площадь такой фигуры вычисляется по формуле

. (3)

Начнём со случаев, когда площадь фигуры может быть вычислена по формуле (1).

Пример 1. Найти площадь фигуры, ограниченной графиком функции , осью абсцисс (Ox) и прямыми x = 1, x = 3.

Решение. Так как y = 1/x > 0 на отрезке [1; 3], то площадь криволинейной трапеции находим по формуле (1):

.

Пример 2. Найти площадь фигуры, ограниченной графиком функции , прямой x = 1 и осью абсцисс (Ox).

Решение. Результат применения формулы (1):

Если то s = 1/2; если то s = 1/3, и т.д.

Пример 3. Найти площадь фигуры, ограниченной графиком функции , осью абсцисс (Ox) и прямой x = 4.

Решение. Фигура, соответствующая условию задачи – криволинейная трапеция, у которой левый отрезок выродился в точку. Пределами интегрирования служат 0 и 4. Поскольку , по формуле (1) находим площадь криволинейной трапеции:

.

Пример 4. Найти площадь фигуры, ограниченной линиями , , и находящейся в 1-й четверти.

Решение. Чтобы воспользоваться формулой (1), представим площадь фигуры, заданной условиями примера, в виде суммы площадей треугольника OAB и криволинейной трапеции ABC.

При вычислении площади треугольника OAB пределами интегрирования служат абсциссы точек O и A, а для фигуры ABC – абсциссы точек A и C (A является точкой пересечения прямой OA и параболы, а C – точкой пересечения параболы с осью Ox).

Решая совместно (как систему) уравнения прямой и параболы, получим (абсциссу точки A) и (абсциссу другой точки пересечения прямой и параболы, которая для решения не нужна). Аналогично получим , (абсциссы точек C и D). Теперь у нас еть всё для нахождения площади фигуры. Находим:

Пример 5. Найти площадь криволинейной трапеции ACDB, если уравнение кривой CD и абсциссы A и B соответственно 1 и 2.

Решение. Выразим данное уравнение кривой через игрек: Площадь криволинейной трапеции находим по формуле (1):

.

Нет времени вникать в решение? Можно заказать работу!

Переходим к случаям, когда площадь фигуры может быть вычислена по формуле (2).

Пример 6. Найти площадь фигуры, ограниченной параболой и осью абсцисс (Ox).

Решение. Данная фигура расположена ниже оси абсцисс. Поэтому для вычисления её площади воспользуемся формулой (2). Пределами интегрирования являются абсциссы и точек пересечения параболы с осью Ox. Следовательно,

Пример 7. Найти площадь, заключённую между осью абсцисс (Ox) и двумя соседними волнами синусоиды.

Решение. Площадь данной фигуры можем найти по формуле (2):

.

Найдём отдельно каждое слагаемое:

.

.

Окончательно находим площадь:

.

Пример 8. Найти площадь фигуры, заключённой между параболой и кривой .

Решение. Выразим уравнения линий через игрек:

Площадь по формуле (2) получим как

,

где a и b – абсциссы точек A и B. Найдём их, решая совместно уравнения:

Отсюда

Окончательно находим площадь:

И, наконец, случаи, когда площадь фигуры может быть вычислена по формуле (3).

Пример 9. Найти площадь фигуры, заключённой между параболами и .

Решение. Требуется вычислить площадь фигуры AmBn, у которой боковые отрезки выродились в точки A и B пересечения парабол. Решая совместно (как систему) уравнения парабол, находим их абсциссы: и . На отрезке [-1, 5] получаем . Следовательно, по формуле (3) находим площадь фигуры:

Снова решаем задачи вместе

Пример 12. Найти площадь фигуры, ограниченной графиками функций , и прямыми и .

Решение. Так как на отрезке [0, 2], то, используя для нахождения площади формулу (3), получим

Пример 13. Найти площадь фигуры, заключённой между параболой и прямой .

Решение. Находим абсциссы точек пересечения параболы и прямой: и . Так как на отрезке [0, 4], то по формуле (3) находим площадь фигуры:

Нет времени вникать в решение? Можно заказать работу! Пройти тест по теме Интеграл

Начало темы “Интеграл”

Найти неопределённый интеграл: начала начал, примеры решений Метод замены переменной в неопределённом интеграле Интегрирование подведением под знак дифференциала Метод интегрирования по частям Интегрирование рациональных функций и метод неопределённых коэффициентов Интегрирование некоторых иррациональных функций Интегрирование тригонометрических функций Объём тела вращения с помощью интеграла Вычисление двойных интегралов Длина дуги кривой с помощью интеграла Площадь поверхности вращения с помощью интеграла Определение работы силы с помощью интеграла

Источник: https://function-x.ru/integral5.html

Методы вычисления площади фигуры, ограниченной линиями

Как вычислить площадь фигуры, ограниченной графиками функций

Вычислить площадь фигуры на плоскости считается довольно простой операцией. Для ее выполнения необходимо знать только формулу. Существенно усложняет задачу фигура, ограниченная прямыми.

Одной из них считается криволинейная трапеция. Ее площадь можно определить только при нахождении значений определенного интеграла.

Операция интегрирования считается довольно сложной, поскольку необходимо знать основные правила. Перед нахождением площади криволинейной трапеции специалисты рекомендуют внимательно изучить и освоить правила интегрирования основных функций.

Разбирается неопределенный интеграл, а затем осуществляется переход к более сложным операциям.

Информация об интегралах

С понятием интеграла связано много направлений научных отраслей. Обозначается он символом «∫». С помощью интеграла открываются большие возможности по быстрому и эффективному нахождению значений следующих величин: площади криволинейной трапеции, объема тела вращения, поверхности, пути при неравномерном движении, массы неоднородного физического тела и так далее.

Упрощенный вариант представления и определения интеграла — сумма бесконечно малых слагаемых. Интеграл бывает нескольких типов: одинарный, двойной, тройной, криволинейный и так далее. Для любого элемента он может быть двух типов:

  1. Неопределенный.
  2. Определенный.

Операция нахождения первого типа значительно проще второго. Это объясняется тем, что во втором случае следует не только найти первообразную, но и выполнить правильную подстановку значений.

Неопределенным интегралом функции вида f(х) называется такая первообразная функция F(х), производная которой равна подинтегральному выражению. Записывается это таким образом: ∫(f(x)) = F(х) + С.

Последняя величина является константой, поскольку при выполнении операции нахождения производной константа равна 0.

Для нахождения первообразной используется специальная таблица интегралов:

Рисунок 1. Таблица интегралов и их первообразные.

В таблице приведены простые функции. Для нахождения площади фигуры, которая ограничена линиями, достаточно значений первообразных на рисунке 1. Вычисление определенного интеграла заключается в получении первообразной и подстановке начального и конечного значений.

Следует отметить, что константа при этом не берется. Существует способ, чтобы найти определенный интеграл. Формула Ньютона-Лейбница позволяет быстро и эффективно вычислить площадь фигуры.

Для этого нужно подставить значения ее границ (a и b) в первообразные: F(x)|(a;b) = F(b) – F(a).

Криволинейные фигуры

Криволинейная фигура (трапеция) — класс плоских фигур, которые ограничены графиком неотрицательной и непрерывной функции, а также осью ОУ и прямыми (х = а, х = b). Она изображена на рисунке 2. Для нахождения ее площади следует использовать определенный интеграл.

Рисунок 2. Фигуры с криволинейными сторонами.

Интегрирование разбивает фигуру на прямоугольные части.

Длина каждой из них равна ординате y = f(х) через промежутки, которые очень малы, по оси декартовой системы координат (есть еще и полярная) ОХ на отрезке [a;b]. Ширина является бесконечно малым значением.

При интегрировании находятся площади прямоугольников и складываются. Для того чтобы не путаться в графиках, геометрическую фигуру следует заштриховать.

Криволинейная трапеция — геометрическая фигура с неровными сторонами, которые образовались в результате пересечения графика непрерывной функции с осями абсцисс и ординат.

Применение обыкновенных методов нахождения площади этой фигуры невозможно, поскольку она обладает одной или несколькими неровными сторонами (кривыми линиями).

Способы вычисления и рекомендации

Для расчетов площади криволинейной трапеции используется несколько методов. Их условно можно разделить на следующие: автоматизированные и ручные. Первый из них выполняется при помощи специализированного программного обеспечения (ПО). Примером является онлайн-калькулятор, который не только находит площадь заданной фигуры, но и изображает ее в декартовой системе координат.

Существует и другое ПО, которое является более «мощным». К нему можно отнести наиболее популярные среды: Maple и Matlab. Однако существует множество программ, написанных на языке программирования Python. Программы нужны также при освоении темы интегрирования. Если необходимо рассчитать множество интегралов и площадей криволинейных фигур, то без них не обойтись.

Новичку для автоматизированных вычислений рекомендуется применять различные онлайн-калькуляторы. Однако следует выделить неплохую программу, которая обладает довольно неплохими функциональными возможностями.

Она называется Integral calculator и представляет собой очень удобное приложение для Android-устройств. Кроме того, можно скачать подобное ПО для Linux, Mac и Windows.

Программа — это калькулятор, который используется для нахождения интегралов и производных, а также его можно применять для решения уравнений интегрального и дифференциального типов. Integral calculator обладает такими функциональными возможностями:

  1. Вычисление производных.
  2. Нахождения первообразных для определенных и неопределенных интегралов.
  3. Решение систем уравнений.
  4. Выполнения операций над матрицами и определителями.
  5. Построение графиков заданных функций в 2D и 3D.
  6. Расчет точек перегиба.
  7. Вычисление рядов Фурье.
  8. Решение дифференциальных уравнений линейного типа первого и второго порядков.

Однако специалисты не рекомендуют использовать приложения такого типа, поскольку нужно уметь решать подобные задачи самостоятельно. Любые математические операции развивают мышление, а злоупотребление ПО приводит к значительной деградации. Решать какие-либо задачи рекомендуется также людям, которые не имеют отношения к математической сфере.

Основной алгоритм

При нахождении площади криволинейной трапеции рекомендуется следовать определенному алгоритму. Он поможет избежать ошибок, поскольку задача разбивается на несколько простых подзадач, решение которых довольно просто контролировать. Алгоритм имеет следующий вид:

  1. Нужно прочитать и понять условие задачи.
  2. Начертить декартовую систему координат.
  3. Построить график заданной функции.
  4. Изобразить линии, ограничивающие фигуру.
  5. После определения границ нужно аккуратно заштриховать фигуру.
  6. Вычислить неопределенный интеграл функции, которая дана в условии.
  7. Посчитать площадь, подставив значения ограничивающих прямых в первообразную.
  8. Проверить решение задачи при помощи программы.

Первый пункт — внимательное чтение условия задачи. Этап считается очень важным, поскольку формирует дальнейший алгоритм. Необходимо выписать все известные данные, а затем подумать над дальнейшим решением задачи. Следует обратить особое внимание на график функции, который при возможности нужно упростить. Далее следует выписать линии, которые будут ограничивать фигуру.

Следующий пункт считается наиболее простым, поскольку нужно начертить обыкновенную систему координат. В условии должен быть указан ее тип. Если обозначена полярная система, то следует ее начертить. Во всех остальных случаях изображается декартовая система координат.

Третий пункт алгоритма — правильное построение графика функции. В этом случае нет необходимости составлять таблицу зависимости значения функции от аргумента. График должен быть схематичным. Например, если это парабола, то нужно ее изобразить. В этом случае необходимо ознакомиться с основными базовыми функциями и их графиками.

Следующим шагом является правильное изображение прямых. Если ее уравнение имеет следующий вид “x = 5” или что-то подобное, то она будет проходить параллельно оси ОУ.

Например, при y = 10 прямая проходит параллельно оси ОХ. В других случаях нужно составить таблицу зависимостей значений уравнения прямой от переменной.

Следует брать всего два значения аргумента, поскольку их достаточно для проведения прямой.

После всех операций образуется фигура, которая ограничена линиями. Ее необходимо заштриховать. После этого вычисляется неопределенный интеграл заданной функции. Необходимо воспользоваться табличными значениями первообразных на рисунке 2. Однако здесь есть небольшой нюанс: константу записывать нет необходимости. Она «уничтожается» при подстановке в формулу Ньютона-Лейбница.

В полученное значение следует подставить значения границ. Кроме того, необходимо обратить особое внимание на знак формулы. При отрицательном значении границы формула принимает следующий вид: F(x)|(-a;b) = F(b) – F(-a) = F(b) + F(a). Проверка правильности решения выполняется с помощью ПО.

Примеры решения

Для закрепления теоретического материала специалисты рекомендуют решить несколько задач. В качестве примера можно взять криволинейные трапеции, изображенные на рисунке 2.

Разновидность параболы

В первом примере функция вида y = -x2 + 2x и ось ОХ образуют фигуру. Необходимо найти ее площадь. Из функции видно, что ветви параболы направлены вниз (отрицательный знак перед квадратом). Точки пересечения находятся следующим образом:

  1. Тело функции приравнивается к 0: -х2 + 2x = 0.
  2. Выносится общий множитель: -x(x-2) = 0.
  3. Решаются обе части уравнения.
  4. Первый корень: -х1 = 0 или х1 = 0.
  5. Для нахождения второго нужно решить другую часть уравнения: х2-2 = 0. Отсюда, х2 = 2.

Ветви параболы проходят через координаты по ОХ: 0 и 2 соответственно. Координата «х» вершины точки параболы находится с помощью подстановки в формулу: x = -b/(2*a) = -2 / -2 = 1.

В этом случае координата «у» вычисляется следующим образом: y = -(12) + 2 * 1 = -1 + 2 = 1. Точка с координатами (1;1) является вершиной параболы.

Границы интегрирования — координаты по ОХ, через которые проходят ветви параболы.

После всех операций следует вычислить неопределенный интеграл функции, воспользовавшись таблицей на рисунке 1: ∫ (-х2 + 2x) dx = – (x3 / 3 + x2) + C = x2 – x3 / 3 + C.

После этого следует подставить начальное и конечное значения (константа убирается): S = x2 – x3 / 3 = (22 – 23 / 3) – (02 – 03 / 3) = 4 – 8/3 = 4 / 3 (кв. ед.). Последняя запись является единицей измерения площади.

Она обозначается в условных единицах, так как в условии задачи размерность сторон фигуры не указана.

Гипербола, степенная и прямая

На следующем рисунке изображен график функции гиперболы (у = 1 / х). Прямые, которые ограничивают график, описываются следующими законами: у1 = -2 и у2 = -1. Для вычисления площади заданной фигуры следует взять интеграл: ∫(1/х) dx = ln (|x|) + С. Для окончательного решения необходимо подставить значения в натуральный логарифм: S = ln (2) – ln (1) = 0,6931 – 0 = 0,6931 (кв. ед.).

Фигура, которая ограничена прямыми y1 = -1 и y2 = 1, и представлена функцией вида y = 3x. Площадь находится следующим образом: S = ∫ (3x) dx = 3x / (ln(|3|)) = [31 / (ln(3))] – [3(-1) / (ln(3))] = (3 / 1,0986) – ((1/3) / 1,0986) = 2,7307 – 0,3034 = 2,4273 (кв. ед.).

Последняя фигура представлена графиком прямой y = 0,5х + 1, которую ограничивают прямые х1 = -1 и х2 = 2. Значение площади можно найти таким способом: S = ∫ (0,5х + 1) dx = (0,5 * х2) / 2 + x = [((0,5 * 22) / 2) + 2] – [((0,5 * (-1)2) / 2) + (-1)] = 3 – 0,75 = 2,25 (кв. ед.).

Для определения значения площади криволинейной фигуры (трапеции) необходимо использовать определенные интегралы. При решении нужно внимательно следить за знаками и первообразными из таблицы на рисунке 1.

Источник: https://nauka.club/matematika/vychislit-ploshchad-figury-ogranichennoy-liniyami.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.