Сернистая кислота: химические свойства, получение
Получение сернистой кислоты уравнение. Сернистая кислота: химические свойства, получение
Сернистая кислота способна реагировать с кислородом. При этом образуется серная кислота. Такая реакция протекает очень долго и возможна только при нарушении правил хранения. Сернистая кислота обладает как окислительными, так и восстановительными свойствами. С ее помощью можно получать галогенные кислоты. Водный раствор при реакции с хлором образует соляную и серную кислоту.
При реакции с сильными восстановителями сернистая кислота играет роль окислителя. Одним из таких веществ является сероводород, газ с очень неприятным запахом.
Взаимодействуя с водным раствором серной кислоты, он образует серу и воду. Соли сернистой кислоты также обладают восстановительными свойствами. Они делятся на сульфиты и гидросульфиты.
При реакциях окисления этих солей образуется серная кислота.
Получение сернистой кислоты
Сернистая кислота образуется только при взаимодействии сернистого газа и воды. Нужно получить сернистый газ. Это можно сделать при помощи меди и серной кислоты. Осторожно налейте концентрированную серную кислоту в пробирку и бросьте туда кусочек меди. Нагрейте пробирку при помощи спиртовки.
В результате нагревания образуется медный купорос (сульфат меди), вода и сернистый газ, который при помощи специальной трубочки нужно подвести к колбочке с чистой водой. Таким образом можно получить сернистую кислоту.
Помните, что сернистый газ вреден для человека. Он вызывает поражение дыхательных путей, потерю аппетита и головную боль. Длительное вдыхание может вызвать обморочное состояние. При работе с ним нужна осторожность.
Применение сернистой кислоты
Сернистая кислота обладает антисептическими свойствами. Ее применяют при обеззараживании поверхностей, ферментации зерна. С ее помощью можно отбелить некоторые вещества, которые при взаимодействии с сильными окислителями (например, хлором) разлагаются.
К таким веществам относится шерсть, шелк, бумага и некоторые другие. Ее антибактериальные свойства используются для предотвращения брожения вина в бочках .
Таким образом благородный напиток может храниться очень долго, приобретая благородный вкус и неповторимый аромат.
Сернистую кислоту используют при производстве бумаги. Добавление этой кислоты входит в технологию получения сульфитной целлюлозы. Затем ее обрабатывают раствором гидросульфита кальция, чтобы связать волокна воедино.
- H2SO3, слабая двухосновная кислота. В свободном виде не выделена, существует в водных растворах. Соли сернистой кислоты сульфиты … Большой Энциклопедический словарьСЕРНИСТАЯ КИСЛОТА – (H2SO3) слабая двухосновная кислота. Существует лишь в водных растворах. Соли С. к. сульфиты. Применяют в целлюлозно бумажной и пищевой промышленности. См. также Кислоты и ангидриды … Российская энциклопедия по охране трудасернистая кислота – — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN sulfurous acid … Справочник технического переводчикаН2SO3, слабая двухосновная кислота. В свободном виде не выделена, существует в водных растворах. Соли серной кислоты сульфиты. * * * СЕРНИСТАЯ КИСЛОТА СЕРНИСТАЯ КИСЛОТА, H2SO3, слабая двухосновная кислота. В свободном виде не выделена,… … Энциклопедический словарьсернистая кислота – sulfito rūgštis statusas T sritis chemija formulė H₂SO₃ atitikmenys: angl. sulfurous acid rus. сернистая кислота ryšiai: sinonimas – vandenilio trioksosulfatas (2–) … Chemijos terminų aiškinamasis žodynasH2SO3, слабая двухосновная кислота, отвечающая степени окисления серы +4. Известна только в разбавленных водных растворах. Константы диссоциации: K1 = 1,6 · 10 2, K2 = 1,0 · 10 7 (18°C). Даёт два ряда солей: нормальные Сульфиты и кислые… … Большая советская энциклопедияH2SO3, слабая двухосновная кислота. В свободном виде не выделена, существует в вод. р рах. Соли С. к. сульфиты … Естествознание. Энциклопедический словарьСм. Сера … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Диоксид (двуокись) серы образуется при сжигании серы в воздухе или кислороде. Он получается также при прокаливании на воздухе («обжигании») сульфидов металлов, например железного колчедана:
По этой реакции диоксид серы получают обычно в промышленности (о других промышленных способах получения см, 9 § 131).
Диоксид серы – бесцветный газ («сернистый газ») с резким эапахом горячей серы. Он довольно легко конденсируется в бесцветную жидкость, кипящую при . При испарении жидкого происходит сильное понижение температуры (до ).
Диоксид серы хорошо растворяется в воде (около 40 объемов в 1 объеме воды при ); при этом частично происходит реакция с водой и образуется сернистая кислота:
Таким образом, диоксид серы является ангидридом сернистой кислоты. При нагревании растворимость уменьшается и равновесие смещается влево; постепенно весь диоксид серы снова выделяется из раствора.
Молекула построена аналогично молекуле озона. Ядра составляющих ее атомов образуют равнобедренный треугольник:
Здесь атом серы, как и центральный атом кислорода в молекуле озона, находится в состоянии -гибридизации и угол близок к .
Ориентированная перпендикулярно к плоскости молекулы -орбиталь атома серы не участвует в гибридизации.
За счет этой орбитали и аналогично ориентированных -орбиталей атомов кислорода образуется трехцентровая -связь; осуществляющая ее пара электронов принадлежит всем трем атомам молекулы.
Диоксид серы применяют для получения серной кислоты, а также (в значительно меньших количествах) для беления соломы, шерсти, шелка и как дезинфицирующее средство (для уничтожения плесневых грибков в подвалах, погребах, винных бочках, бродильных чанах).
Сернистая кислота – очень непрочное соединение. Она известна только в водных растворах. При попытках выделить сернистую кислоту она распадается на и воду. Например, при действии концентрированной серной кислоты на сульфит натрия вместо сернистой кислоты выделяется диоксид серы:
Раствор сернистой кислоты необходимо предохранять от доступа воздуха, иначе она, поглощая из воздуха кислород, медленно окисляется в серную кислоту:
Сернистая кислота – хороший восстановитель. Например, свободные галогены восстанавливаются ею в галогеноводороды:
Однако при взаимодействии с сильными восстановителями сернистая кислота может играть роль окислителя. Так, реакция ее с сероводородом в основном протекает согласно уравнению:
Будучи двухосновной , сернистая кислота образует два ряда солей. Средние ее соли называются сульфитами, кислые – гидросульфитами.
Как и кислота, сульфиты и гидросульфиты являются восстановителями. При их окислении получаются соли серной кислоты.
Сульфиты наиболее активных металлов при прокаливании разлагаются с образованием сульфидов и сульфатов (реакция самоокисления – самовосстановления):
Сульфиты калия и натрия применяются для отбеливания некоторых материалов, в текстильной промышленности при крашении тканей, в фотографии. Раствор (эта соль существует только в растворе) применяется для переработки древесины в так называемую сульфитную целлюлозу, из которой потом получают бумагу.
Источник: https://fruba.ru/preparation-of-sulfuric-acid-equation-sulphurous-acid-chemical-properties-production.html
Химические свойства сернистой кислоты таблица. Сернистая кислота: химические свойства, получение
Серная кислота H 2 SO 4 – одна из сильных двухосновных кислот. В разбавленном состоянии она окисляет почти все металлы, кроме золота и платины. Интенсивно реагирует с неметаллами и органическими веществами, превращая некоторые из них в уголь.
При приготовлении раствора серной кислоты всегда надо её приливать к воде, а не наоборот, во избежание разбрызгивания кислоты и вскипания воды. При 10 °С затвердевает, образуя прозрачную стекловидную массу.
При нагревании 100-процентная серная кислота легко теряет серный ангидрид (триокись серы SO 3) до тех пор, пока её концентрация не составит 98 %. Именно в таком состоянии её обычно и используют в лабораториях.
В концентрированном (безводном) состоянии серная кислота – бесцветная, дымящаяся на воздухе (из-за паров), маслянистая жидкость с характерным запахом (Т кипения=338 °С). Она является очень сильным окислителем. Это вещество обладает всеми свойствами кислот:
Химические свойства серной кислоты
H 2 SO 4 + Fe → FeSO 4 + H 2 ;
2H 2 SO 4 + Cu → CuSO 4 + SO 2 +2H 2 O – в этом случае кислота является концентрированной.
H 2 SO 4 + CuO → CuSO 4 + H 2 O
Получающийся раствор синего цвета – CuSO 4 – раствор медного купороса. Серную кислоту еще называют купоросным маслом, так как при реакциях с металлами и их оксидами образуются купоросы. Например, при химической реакции с железом (Fe) – образуется светло-зелёный раствор железного купороса.
https://www.youtube.com/watch?v=Td6itaNfJrU
Химическая реакция с основаниями и щелочами (или реакция нейтрализации)
H 2 SO 4 + 2NaOH → Na 2 SO 4 + 2H 2 O
Сернистая кислота (или правильнее сказать – раствор сернистого газа в воде) образует два вида солей: сульфиты и гидросульфиты. Эти соли являются восстановителями.
Н 2 SO 4 + NaOH → NaНSO 3 + Н 2 O – такая реакция протекает при избытке сернистой кислоты
Н 2 SO 4 + 2NaOH → Na 2 SO 3 + 2Н 2 O – а эта реакция протекает при избытке едкого натра
Сернистая кислота обладает отбеливающим действием. Всем известно, что подобным действием обладает и хлорная вода. Но отличие заключается в том, что в отличии от хлора сернистый газ не разрушает красители, а образует с ними неокрашенные химические соединения!
Кроме основных свойств кислотсернистая кислота способна обесцвечивать раствор марганцовки по следующему уравнению:
5Н 2 SO 3 +2KMnO 4 → 2 Н 2 SO 4 +2MnSO 4 +K 2 SO 4 +Н 2 O
В этой реакции образуется бледно-розовый раствор, состоящий из сульфатов калия, марганца. Окраска обусловлена именно сульфатом марганца.
Сернистая кислота способна обесцветить бром
Н 2 SO 3 + Br 2 + Н 2 O → Н 2 SO 4 + 2HBr
В этой реакции образуется раствор, состоящий сразу из 2-х сильных кислот: серной и бромной.
Если хранить сернистую кислоту при доступе воздуха, то этот раствор окисляется и превращается в серную кислоту
2Н 2 SO 3 + O 2 → 2Н 2 SO 2
- СЕРНИСТАЯ КИСЛОТА – H2SO3, слабая двухосновная кислота. В свободном виде не выделена, существует в водных растворах. Соли сернистой кислоты сульфиты … Большой Энциклопедический словарьСЕРНИСТАЯ КИСЛОТА – (H2SO3) слабая двухосновная кислота. Существует лишь в водных растворах. Соли С. к. сульфиты. Применяют в целлюлозно бумажной и пищевой промышленности. См. также Кислоты и ангидриды … Российская энциклопедия по охране трудасернистая кислота – — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN sulfurous acid … Справочник технического переводчикасернистая кислота – Н2SO3, слабая двухосновная кислота. В свободном виде не выделена, существует в водных растворах. Соли серной кислоты сульфиты. * * * СЕРНИСТАЯ КИСЛОТА СЕРНИСТАЯ КИСЛОТА, H2SO3, слабая двухосновная кислота. В свободном виде не выделена,… … Энциклопедический словарьсернистая кислота – sulfito rūgštis statusas T sritis chemija formulė H₂SO₃ atitikmenys: angl. sulfurous acid rus. сернистая кислота ryšiai: sinonimas – vandenilio trioksosulfatas (2–) … Chemijos terminų aiškinamasis žodynasСернистая кислота – H2SO3, слабая двухосновная кислота, отвечающая степени окисления серы +4. Известна только в разбавленных водных растворах. Константы диссоциации: K1 = 1,6 · 10 2, K2 = 1,0 · 10 7 (18°C). Даёт два ряда солей: нормальные Сульфиты и кислые… … Большая советская энциклопедияСЕРНИСТАЯ КИСЛОТА – H2SO3, слабая двухосновная кислота. В свободном виде не выделена, существует в вод. р рах. Соли С. к. сульфиты … Естествознание. Энциклопедический словарьСернистая кислота – см. Сера … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
При растворении в воде диоксида серы (SO 2) получается химическое соединение, известное как сернистая кислота. Формула этого вещества записывается так: H 2 SO 3 .
По правде говоря, данное соединение является крайне нестабильным, с определенным допущением даже можно утверждать, что его на самом деле не существует.
Тем не менее данную формулу часто используют для удобства написания уравнений химических реакций.
Сернистая кислота: основные свойства
Для водного раствора двуокиси серы характерна кислая среда. Сам он обладает всеми свойствами, которые присущи кислотам, в том числе и реакцией нейтрализации. Сернистая кислота способна образовывать два вида солей: гидросульфиты и обычные сульфиты. Оба относятся к группе восстановителей.
Первый вид обычно получается, когда сернистая кислота присутствует в довольно большом количестве: Н 2 SO 3 + KOH -> KHSO 3 + Н 2 O. В противном случае получается обычный сульфит: Н 2 SO 3 + 2КОН -> К 2 SO 3 + 2Н 2 O. Качественной реакцией на данные соли является их взаимодействие с сильной кислотой.
В результате выделяется газ SO 2 , который легко отличить по характерному резкому запаху.
Сернистая кислота способна оказывать отбеливающее воздействие. Не секрет, что подобный эффект также дает и хлорная вода. Однако рассматриваемое соединение имеет одно важное преимущество: в отличие от хлора сернистая кислота не приводит к разрушению красителей, сернистый газ формирует с ними бесцветные химические соединения.
Данное свойство нередко применяется для беления тканей из шелка, шерсти, растительного материала, а также всего, что разрушается от окислителей, содержащих в своем составе Cl. В старину данное соединение даже применяли для возвращения первоначального вида дамским соломенным шляпкам. H 2 SO 3 представляет собой достаточно сильный восстановитель.
При доступе кислорода ее растворы постепенно превращаются в серную кислоту. В тех же случаях, когда она взаимодействует с более сильным восстановителем (к примеру, с сероводородом), серная кислота, наоборот, проявляет окислительные свойства. Диссоциация данного вещества проходит в два этапа.
Вначале формируется гидросульфит-анион, а затем наступает вторая ступень, и он превращается в анион-сульфит.
Где используется сернистая кислота
Получение данного вещества играет большую роль в производстве всевозможных виноматериалов в качестве антисептика, в частности с его помощью удается предотвратить процесс брожения продукта в бочках и тем самым обеспечить его сохранность.
Также его применяют для того, чтобы воспрепятствовать ферментации зерна в ходе извлечения из него крахмала. Сернистая кислота и препараты на ее основе обладают широким антимикробным свойством, и поэтому их часто применяют в плодоовощной промышленности при консервировании.
Гидросульфит кальция, его еще называют сульфитный щелок, используют для того, чтобы переработать древесину в сульфитную целлюлозу, из которой впоследствии изготавливают бумагу.
Осталось добавить, что для человека это соединение является ядовитым, а потому любые лабораторные работы и эксперименты с ним требуют осторожности и повышенного внимания.
Сернистая кислота – это неорганическая двухосновная неустойчивая кислота средней силы. Непрочное соединение, известна только в водных растворах при концентрации не более шести процентов.
При попытках выделить чистую сернистую кислоту она распадается на оксид серы (SO2) и воду (H2O).
Например, при воздействии серной кислоты (H2SO4) в концентрированном виде на сульфит натрия (Na2SO3) вместо сернистой кислоты выделяется оксид серы (SO2). Вот так выглядит данная реакция:
Na2SO3 (сульфит натрия) + H2SO4 (серная кислота) = Na2SO4 (сульфат натрия) + SO2 (серы диоксид) + H2O (вода)
Раствор сернистой кислоты
При его хранении необходимо исключить доступ воздуха. Иначе сернистая кислота, медленно поглощая кислород (O2), превратится в серную.
2H2SO3 (кислота сернистая) + O2 (кислород) = 2H2SO4 (кислота серная)
Растворы сернистой кислоты имеют довольно специфический запах (напоминает запах, остающийся после зажжения спички), наличие которого можно объяснить присутствием оксида серы (SO2), химически не связанного водой.
Химические свойства сернистой кислоты
1. H2SO3) может использоваться в качестве восстановителя или окислителя.
H2SO3 является хорошим восстановителем. С ее помощью можно из свободных галогенов получить галогеноводороды. Например:
H2SO3 (кислота сернистая) + Cl2 (хлор, газ) + H2O (вода) = H2SO4 (кислота серная) + 2HCl (соляная кислота)
Но при взаимодействии с сильными восстановителями данная кислота будет выполнять роль окислителя. Примером может послужить реакция сернистой кислоты с сероводородом:
H2SO3 (кислота сернистая) + 2H2S (сероводород) = 3S (сера) + 3H2O (вода)
2. Рассматриваемое нами химическое соединение образует два – сульфиты (средние) и гидросульфиты (кислые). Эти соли являются восстановителями, так же, как и (H2SO3) сернистая кислота. При их окислении образуются соли серной кислоты. При прокаливании сульфитов активных металлов образуются сульфаты и сульфиды. Это реакция самоокисления-самовосстановления. Например:
4Na2SO3 (сульфит натрия) = Na2S + 3Na2SO4 (сульфат натрия)
Сульфиты натрия и калия (Na2SO3 и K2SO3) применяются при крашении тканей в текстильной промышленности, при отбеливании металлов, а также в фотографии. Кальция гидросульфит (Ca(HSO3)2), существующий только в растворе, используется для переработки древесного материала в специальную сульфитную целлюлозу. Из нее потом делают бумагу.
Применение сернистой кислоты
Сернистая кислота используется:
Для обесцвечивания шерсти, шелка, древесной массы, бумаги и других аналогичных веществ, не выдерживающих отбеливания при помощи более сильных окислителей (например, хлора);
Как консервант и антисептик, например, для предотвращения ферментации зерна при получении крахмала или для предотвращения процесса брожения в бочках вина;
Для сохранения продуктов, например, при консервировании овощей и плодов;
В переработке в целлюлозу сульфитную, из которой потом получают бумагу. В этом случае используется раствор кальция гидросульфита (Ca(HSO3)2), который растворяет лигнин – особое вещество, связывающее волокна целлюлозы.
Сернистая кислота: получение
Данную кислоту можно получить посредством растворения сернистого газа (SO2) в воде (H2O). Вам понадобятся серная кислота в концентрированном виде (H2SO4), медь (Cu) и пробирка. Алгоритм действий:
1. Осторожно налейте в пробирку концентрированную сернистую кислоту и затем поместите туда кусочек меди. Нагрейте. Происходит следующая реакция:
Cu (медь) + 2H2SO4 (серная кислота) = CuSO4 (сульфат серы) + SO2 (сернистый газ) + H2O (вода)
2. Поток сернистого газа необходимо направить в пробирку с водой. При его растворении частично происходит с водой, в результате которой образуется сернистая кислота:
SO2 (сернистый газ) + H2O (вода) = H2SO3
Итак, пропуская сернистый газ через воду, можно получить сернистую кислоту. Стоит учесть, что данный газ оказывает раздражающее воздействие на оболочки дыхательных путей, может вызвать их воспаление, а также потерю аппетита. При длительном его вдыхании возможна потеря сознания. Обращаться с этим газом нужно с предельной осторожностью и внимательность.
Сернистая кислота способна реагировать с кислородом. При этом образуется серная кислота. Такая реакция протекает очень долго и возможна только при нарушении правил хранения. Сернистая кислота обладает как окислительными, так и восстановительными свойствами. С ее помощью можно получать галогенные кислоты. Водный раствор при реакции с хлором образует соляную и серную кислоту.
При реакции с сильными восстановителями сернистая кислота играет роль окислителя. Одним из таких веществ является сероводород, газ с очень неприятным запахом.
Взаимодействуя с водным раствором серной кислоты, он образует серу и воду. Соли сернистой кислоты также обладают восстановительными свойствами. Они делятся на сульфиты и гидросульфиты.
При реакциях окисления этих солей образуется серная кислота.
Кислоты — классификация, свойства, получение и применение
Кислоты (неорганические, минеральные) — это сложные соединения состоящие из катиона водорода (H+) и аниона кислотного остатка(SO32-, SO42-, NO3— и т.д).
Кислотам дали такое название не просто так. Большинство из них имеют кислый вкус. С некоторыми из них знаком каждый из вас. Это, например, уксусная кислота, которая есть в каждом доме, аскорбиновая кислота (она же витамин C), лимонная кислота и т.д. Но не стоит все кислоты пробовать на вкус. Кислоты являются очень едкими веществами.
Даже всем нам привычная и известная аскорбиновая кислота в большой концентрации будет вредна нашему организму. А от более сильных кислот — серной, соляной и даже уксусной — можно получить очень сильные ожоги, вплоть до летального исхода.
Поэтому при работе с кислотами нужно быть осторожными, а также соблюдать технику безопасности!!!
Таблица названий некоторых кислот и их солей
Серная | H2SO4 | Сульфат |
Сернистая | H2SO3 | Сульфит |
Сероводородная | H2S | Сульфид |
Соляная (хлористоводородная) | HCl | Хлорид |
Фтороводородная (плавиковая) | HF | Фторид |
Бромоводородная | HBr | Бромид |
Йодоводородная | HI | Йодид |
Азотная | HNO3 | Нитрат |
Азотистая | HNO2 | Нитрит |
Ортофософорная | H3PO4 | Фосфат |
Угольная | H2CO3 | Карбонат |
Кремниевая | H2SiO3 | Силикат |
Уксусная | CH3COOH | Ацетат |
Классификация кислот
Кислородсодержащие (H2SO4) | Бескислородные (HCl) |
Одноосновные (HCl) | Двухосновные (H2SO4) | Трёхосновные (H3PO4) |
Понятие «одноосновная кислота» произошло по причине того, что для нейтрализации одной молекулы одноосновной кислоты нам понадобится одна молекула основания. для двухосновной — соответственно две молекулы и т. д.
Растворимые (HCl) | Нерастворимые (H2SiO3) |
Сильные (H2SO4) | Слабые (CH3COOH) |
Летучие (H2S) | Нелетучие (H2SO4) |
Устойчивые (H2SO4) | Неустойчивые (H2CO3) |
Изменение цвета индикаторов в кислой среде
Метилоранж | оранжевый | красный |
Лакмус | фиолетовый | красный |
Фенолфталеин | бесцветный | бесцветный |
Бромтимоловый синий | зеленый | желтый |
бромкрезоловый зеленый | синий | желтый |
Химические свойства кислот
- Взаимодействие с металлами (в ряду активности находящихся до водорода), протекает с выделением газообразного водорода и образованием солей:
H2SO4 + 2Na → Na2SO4 + H2↑
Металлы, находящиеся в ряду активности после водорода, не вступают в реакцию с кислотой (кроме концентрированной серной кислоты).
Азотная и концентрированная серная кислоты проявляют свойства окислителей, и продукты реакций будут зависеть от концентрации, температуры и природы восстановителя.
- Взаимодействуют с оксидами основных и амфотерных металлов с образованием солей и воды:
H2SO4 + MgO → MgSO4 + H2O
- С основаниями, с образованием солей и воды (так называемая реакция нейтрализации):
H2SO4 + 2NaOH → Na2SO4 + H2O
- Кислоты могут взаимодействовать с солями, если в результате реакции будет образовываться нерастворимая соль, или выделяться газ:
H2SO4 + K2CO3 → K2SO4 + H2O + CO2↑
- Сильные кислоты могут вытеснять из солей более слабые кислоты:
3H2SO4 + 2K3PO4 → 3K2SO4 + H3PO4
Получение кислот
- Взаимодействие кислотного оксида с водой:
H2O + SO3 →H2SO4
- Взаимодействие водорода и неметалла:
H2 + Cl2 → 2HCl
- Вытеснение слабой кислоты из солей, более сильной кислотой:
3H2SO4 + 2K3PO4 → 3K2SO4 + H3PO4
Применение кислот
В настоящее время, минеральные и органические кислоты находят множество сфер применения.
Серная кислота (H2SO4), находит широкое применение в химической технологии, для производства лакокрасочных материалов, производстве минеральных удобрений, в пищевой промышленности (пищевая добавка Е513), в качестве электролита в производстве аккумуляторных батарей.
Раствор двухромовокислого калия в серной кислоте (хромовая смесь) используются в лабораториях для мытья химической посуды. Являясь сильным окислителем, хромка позволяет отмывать посуду от следов загрязнений органическими веществами. Так же, хромовая смесь используется в органическом синтезе.
Борная кислота (H3BO3) используется в медицине как антисептик, в качестве флюса при пайке металлов, как борсодержащее удобрение, в домашнем хозяйстве используется как средство от тараканов.
Широко известны в домашнем использовании при выпечке уксусная и лимонная кислоты. Также в быту их используют для удаления накипи.
Знакомая всем с детства аскорбиновая кислота, более известная в народе как витамин С, применяется при лечении простудных заболеваний.
Азотная кислота (HNO3) находит применение при производстве взрывчатых веществ, при производстве минеральных азотсодержащих удобрений (аммиачная, калиевая селитра), в производстве лекарственных средств (нитроглицерин).
Источник: https://in-chemistry.ru/kisloty-klassifikatsiya-svojstva-poluchenie-primenenie
Оксиды серы. Серная кислота
Сера с кислородом образует два оксида: SO2 – оксид серы (IV) и SO3 – оксид серы (VI).
Оксид серы (IV) — SO2 (сернистый газ, сернистый ангидрид)
Сернистый газ – это бесцветный газ с резким запахом, ядовит. Тяжелее воздуха более чем в два раза. Хорошо растворяется в воде. При комнатной температуре в одном объёме воды растворяется около 40 объёмов сернистого газа, при этом образуется сернистая кислота H2SO3.
Химические свойства
Кислотно-основные свойства
Сернистый газ – типичный кислотный оксид. Он взаимодействует:
а) с основаниями, образуя два типа солей: кислые (гидросульфиты) и средние (сульфиты):
SO2 + NaOH = NaHSO3
SO2 + 2NaOH = Na2SO3 + H2O
б) с основными оксидами:
SO2 + CaO = CaSO3
SO2 + K2O = K2SO3
в) с водой:
SO2 + H2O = H2SO3
Сернистая кислота существуют только в растворе, относится к двухосновным кислотам. Сернистая кислота обладает всеми общими свойствами кислот.
Окислительно – восстановительные свойства
В окислительно-восстановительных процессах сернистый газ может быть как окислителем, так и восстановителем, потому что атом серы в этом соединении имеет промежуточную степень окисления +4.
Как окислитель SO2 реагирует с более сильными восстановителями, например с сероводородом:
SO2 + 2H2S = 3S↓ + 2H2O
Как восстановитель SO2 реагирует с более сильными окислителями, например с кислородом в присутствии катализатора, с хлором и т.д.:
2SO2 + O2 = 2SO3
SO2 + Cl2 + 2H2O = H2SO3 + 2HCl
Получение
1) Сернистый газ образуется при горении серы:
S + O2 = SO2
2) В промышленности его получают при обжиге пирита:
4FeS2 + 11O2 = 2Fe2O3 + 8SO2
3) В лаборатории сернистый газ можно получить:
а) при действии кислот на сульфиты:
Na2SO3 + H2SO4 = Na2SO4 + H2SO3→SO2↑ + H2O
б) при взаимодействии концентрированной серной кислоты с тяжелыми металлами:
Cu + 2H2SO4 = CuSO4 + SO2↑ + 2H2O
Применение
Сернистый газ находит широкое применение в текстильной промышленности для отбеливания различных изделий. Кроме того, его используют в сельском хозяйстве для уничтожения вредных микроорганизмов в теплицах и погребах. В больших количествах SO2 идет на получение серной кислоты.
Оксид серы (VI) – SO3 (серный ангидрид)
Серный ангидрид SO3 – это бесцветная жидкость, которая при температуре ниже 17оС превращается в белую кристаллическую массу. Очень хорошо поглощает влагу (гигроскопичен).
Химические свойства
Кислотно-основные свойства
Как типичный кислотный оксид серный ангидрид взаимодействует:
а) с основаниями, образуя два типа солей – кислые (гидросульфиты) и средние (сульфаты):
SO3 + NaOH = NaHSO4
SO3 + 2NaOH = Na2SO4 + H2O
б) с основными оксидами:
SO3 + CaO = CaSO4
в) с водой:
SO3 + H2O = H2SO4
Особым свойством SO3 является его способность хорошо растворяться в серной кислоте. Раствор SO3 в серной кислоте имеет название олеум.
Образование олеума: H2SO4 + nSO3 = H2SO4 ∙ nSO3
Окислительно-восстановительные свойства
Оксид серы (VI) характеризуется сильными окислительными свойствами (обычно восстанавливается до SO2):
3SO3 + H2S = 4SO2 + H2O
Получение и применение
Серный ангидрид образуется при окислении сернистого газа:
2SO2 + O2 = 2SO3
В чистом виде серный ангидрид практического значения не имеет. Он получается как промежуточный продукт при производстве серной кислоты.
Серная кислота H2SO4
Упоминания о серной кислоте впервые встречаются у арабских и европейских алхимиков.
Ее получали, прокаливая на воздухе железный купорос (FeSO4∙7H2O): 2FeSO4 = Fe2O3 + SO3↑ + SO2↑ либо смесь серы с селитрой: 6KNO3 + 5S = 3K2SO4 + 2SO3↑ + 3N2↑, а выделяющиеся пары серного ангидрида конденсировали. Поглощая влагу, они превращались в олеум.
В зависимости от способа приготовления H2SO4 называли купоросным маслом или серным маслом. В 1595 г. алхимик Андреас Либавий установил тождественность обоих веществ.
Долгое время купоросное масло не находило широкого применения. Интерес к нему сильно возрос после того, как в XVIII в. был открыт процесс получения из индиго индигокармина – устойчивого синего красителя.
Первую фабрику по производству серной кислоты основали недалеко от Лондона в 1736 г. Процесс осуществляли в свинцовых камерах, на дно которых наливали воду. В верхней части камеры сжигали расплавленную смесь селитры с серой, затем туда запускали воздух.
Процедуру повторяли до тех пор, пока на дне ёмкости не образовывалась кислота требуемой концентрации.
В XIX в. способ усовершенствовали: вместо селитры стали использовать азотную кислоту (она при разложении в камере даёт NO2). Чтобы возвращать в систему нитрозные газы были сконструированы специальные башни, которые и дали название всему процессу – башенный процесс. Заводы, работающие по башенному методу, существуют и в наше время.
Серная кислота
Серная кислота – это тяжелая маслянистая жидкость без цвета и запаха, гигроскопична; хорошо растворяется в воде. При растворении концентрированной серной кислоты в воде выделяется большое количество тепла, поэтому ее надо осторожно приливать в воду (а не наоборот!) и перемешивать раствор.
Раствор серной кислоты в воде с содержанием H2SO4 менее 70% обычно называют разбавленной серной кислотой, а раствор более 70% — концентрированной серной кислотой.
Химические свойства
Кислотно-основные свойства
Разбавленная серная кислота проявляет все характерные свойства сильных кислот. Она реагирует:
а) с основными оксидами:
MgO + H2SO4 = MgSO4 + H2O
б) с основаниями:
H2SO4 + NaOH = Na2SO4 + 2H2O
в) с солями:
H2SO4 + BaCl2 = BaSO4↓ + 2HCl
Процесс взаимодействия ионов Ва2+ с сульфат-ионами SO42+ приводит к образованию белого нерастворимого осадка BaSO4. Это качественная реакция на сульфат-ион.
Окислительно – восстановительные свойства
В разбавленной H2SO4 окислителями являются ионы водорода Н+, а в концентрированной – сульфат-ионы SO42+. Ионы SO42+ являются более сильными окислителями, чем ионы Н+ (см.схему).
В разбавленной серной кислоте растворяются металлы, которые в электрохимическом ряду напряжений находятся до водорода. При этом образуются сульфаты металлов и выделяется водород:
Zn + H2SO4 = ZnSO4 + H2↑
Металлы, которые в электрохимическом ряду напряжений находятся после водорода, не реагируют с разбавленной серной кислотой:
Cu + H2SO4 ≠
Концентрированная серная кислота является сильным окислителем, особенно при нагревании. Она окисляет многие металлы, неметаллы и некоторые органические вещества.
При взаимодействии концентрированной серной кислоты с металлами, которые в электрохимическом ряду напряжений находятся после водорода (Cu, Ag, Hg), образуются сульфаты металлов, а также продукт восстановления серной кислоты – SO2.
Реакция серной кислоты с цинком
Более активными металлами (Zn, Al, Mg) концентрированная серная кислота может восстанавливаться до свободной серы или сероводорода. Например, при взаимодействии серной кислоты с цинком, магнием, алюминием в зависимости от концентрации кислоты одновременно могут образовываться различные продукты восстановления серной кислоты – SO2, S, H2S:
Zn + 2H2SO4 = ZnSO4 + SO2↑ + 2H2O
3Zn + 4H2SO4 = 3ZnSO4 + S↓ + 4H2O
4Zn + 5H2SO4 = 4ZnSO4 + H2S↑ + 4H2O
На холоде концентрированная серная кислота пассивирует некоторые металлы, например алюминий и железо, поэтому ее перевозят в железных цистернах:
Fe + H2SO4 ≠
Концентрированная серная кислота окисляет некоторые неметаллы (серу, углерод и др.), восстанавливаясь до оксида серы (IV) SO2:
S + 2H2SO4 = 3SO2↑ + 2H2O
C + 2H2SO4 = 2SO2↑ + CO2↑ + 2H2O
Получение и применение
Реакция серной кислоты с сахаром
В промышленности серную кислоту получают контактным способом. Процесс получения происходит в три стадии:
- Получение SO2 путем обжига пирита:
4FeS2 + 11O2 = 2Fe2O3 + 8SO2↑
- Окисление SO2 в SO3 в присутствии катализатора – оксида ванадия (V):
2SO2 + O2 = 2SO3
- Растворение SO3 в серной кислоте:
H2SO4 + nSO3 = H2SO4 ∙ nSO3
Полученный олеум перевозят в железных цистернах. Из олеума получают серную кислоту нужной концентрации, приливая его в воду. Это можно выразить схемой:
H2SO4 ∙ nSO3 + H2O = H2SO4
Серная кислота находит разнообразное применение в самых различных областях народного хозяйства. Ее используют для осушки газов, в производстве других кислот, для получения удобрений, различных красителей и лекарственных средств.
Соли серной кислоты
Железный купорос
Большинство сульфатов хорошо растворимы в воде (малорастворим CaSO4, еще менее PbSO4 и практически нерастворим BaSO4). Некоторые сульфаты, содержащие кристаллизационную воду, называются купоросами:
CuSO4 ∙ 5H2O медный купорос
FeSO4 ∙ 7H2O железный купорос
Соли серной кислоты имеют все общие свойства солей. Особенным является их отношение к нагреванию.
Сульфаты активных металлов (Na, K, Ba) не разлагаются даже при 1000оС, а других (Cu, Al, Fe) – распадаются при небольшом нагревании на оксид металла и SO3:
Na2SO4 ≠
CuSO4 = CuO + SO3
Скачать:
Скачать бесплатно реферат на тему: «Производство серной кислоты контактным способом» Производство-серной-кислоты-контактным-способом.docx (52 Загрузки)
Скачать рефераты по другим темам можно здесь
*на изображении записи фотография медного купороса
Источник: https://al-himik.ru/oksidy-sery-sernaja-kislota/
Соединения серы (IV)
Сернистый газ SO2, сернистая кислота и ее соли – сульфиты.
SO2 – диоксид серы, сернистый газ, сернистый ангидрид. При обычной температуре – бесцветный газ с резким запахом, хорошо растворим в воде (в 1 л воды при 20°С растворяется – 40 л SO2).
Способы получения
1. Окисление кислородом серы, сероводорода, сульфидов
2. Термическое разложение сульфитов
CaSO3 = СаО + SO2↑
3.Действие сильных кислот на сульфиты
Na2SO3 + 2HCl = SO2 + Н2O + 2NaCI
4.Взаимодействие конц. H2SO4 с восстановителями, например:
2H2SO4 + Си = SO2↑ + CuSO4 + 2Н2O
SO2 – кислотный оксид
При растворении SO2 в воде происходит его частичное соединение с молекулами воды – образуется слабая сернистая кислота.
Взаимодействие с основными оксидами и щелочами
SO2 + СаО = CaSO3 сульфит кальция
SO2 + NaOH = NaHSO3 гидросульфит натрия
SO2 + 2NaOH = Н2O + Na2SO3 сульфит натрия
Диоксид серы окисляется в газовой фазе до SO3:
2SO2 + O2 = SO3
SO2 + O3 = SO3+ O2
SO2+ NO2 = SO3 + NO
На свету легко окисляется хлором:
SO2 + Cl2 — SO2Cl2 хлористый сульфурил
В водных растворах при окислении SO2 образуется серная кислота H2SO4:
SO2 + 2HNO3 = H2SO4 + 2NO2
SO2 + Н2O2 = H2SO4
Обесцвечивание окрашенных окислителей (КМпO4 и Вr2) – качественная реакция для распознавания SO2 (например, отличие его от СO2, СО, СН4 и многих других газов):
SO2 + Вr2 + 2Н2О = H2SO4 + 2НВr
3SO2 + 2КМпO4 + 4Н2О = 3H2SO4 + 2MnO2↓ + 2КОН
SO2 – окислитель
Продуктом восстановления SO2 чаще всего является свободная сера.
SO2 + 2Н2S = 3S↓ + 2Н2О
SO2 + 2СО = S + 2CO2
H2SO3 – сернистая кислота
В свободном состоянии не выделена. Очень непрочное соединение. Образуется при растворении SO2 в воде. Обладает свойствами слабой кислоты.
Сульфиты и гидросульфиты
2-х основная сернистая кислота образует при взаимодействии со щелочами 2 ряда солей: нормальные (средние) – сульфиты Mex(SO3)y и кислые – гидросульфиты Me(HSO3)x.
Сульфиты щелочных Me и аммония растворимы в воде. Сульфиты остальных Me нерастворимы в воде (или не существуют).
Гидросульфиты Me хорошо растворимы в Н2O, некоторые из них существуют только в растворе, например, Ca(HSO3)2.
Гидролиз сульфитов
Водные растворы сульфитов вследствие гидролиза имеют щелочную среду (окрашивают лакмус в синий цвет).
SO3- + Н2O = HSO3- + ОН-
Na2SO3 + Н2O = NaHSO3 + NaOH
I. Не окислительно-восстановительные реакции
1. Взаимодействие с сильными кислотами:
Na2SO3 + 2HCl = 2NaCl + SO2↑ + Н2O
NaHSO3 + HCl = NaCl + SO2↑ + Н2O
Оба типа солей разлагаются сильными кислотами, при этом слабая сернистая кислота вытесняется в виде SO2 и Н2O.
2. Термическое разложение сульфитов:
CaSO3 = СаО + SO2↑
3. Нормальные сульфиты в водных растворах, содержащих избыток SO2, превращаются в гидросульфиты
CaSO3 + SO2 + Н2O = Ca(HSO3)sub>2
Благодаря этой реакции нерастворимые в воде сульфиты превращаются в растворимые гидросульфиты
4. Ионно-обменные реакции с другими солями, приводящие к образованию нерастворимых сульфитов:
Na2SO3 + ZnCl2 = ZnSO3↓ + 2NaCl
II. Окислительно-восстановительные реакции
I. Сульфиты как восстановители.
Сульфиты, подобно SO2, могут быть и восстановителями, и окислителями, поскольку атомы серы в анионах SO3 находятся в промежуточной С.О. +4
В водных растворах и сульфиты, и гидросульфиты легко окисляются до сульфатов. Примеры реакций:
Na2SO3 + Вr2 + Н2O = Na2SO4 + 2НВr
5K2SO3 + 2КМпO4 + 3H2SO4 = 6K2SO4 + 2MnSO4 + 3Н2O
Даже твердые сульфиты при хранении на воздухе медленно окисляются до сульфатов:
2Na2SO3 + O2 = 2Na2SO4
II. Сульфиты как окислители.
Эти реакции не столь многочисленны. При нагревании сухих сульфитов с такими активными восстановителями, как С, Mg, Al, Zn, они переходят в сульфиды:
Na2SO3 + ЗС = Na2S + ЗСО
III. Диспропорционирование сухих сульфитов.
При нагревании до высоких температур сульфиты медленно превращаются в смесь сульфатов и сульфидов:
4K2SO3 = 3K2SO4 + K2S
Источник: http://examchemistry.com/content/lesson/neorgveshestva/sernistaykislota.html